Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CAUSES OF HYPONATREMIA IN NEW ZEALAND
FEMALE ULTRADISTANCE TRIATHLETES

Nichola Tui Hart

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science
In
Nutritional Science

Massey University, Albany, Auckland, New Zealand

2001
Abstract

The Ironman Triathlon is an ultradistance event typically dominated by male competitors. However, the event has become increasingly popular and is now attracting greater female participation [1, 2]. While hyponatremia (plasma sodium concentration < 135mmol/L) has been recognised as a serious complication of prolonged exercise, the aetiology remains unclear and controversial. The postulated causes of hyponatremia include the consumption and retention of excessive volumes of fluid or large unreplaced sodium losses in the sweat.

This study was undertaken to investigate the nutritional, biochemical, hormonal and physical status of New Zealand female ultradistance triathletes, specifically, those competing in the New Zealand Ironman Triathlon, on 3 March 2001. The study was to determine the causes of hyponatremia in these athletes.

Twenty-seven (n=27) ultradistance female triathletes training for the New Zealand Ironman Triathlon were recruited for the study. Participants completed: (a) a brief demographic questionnaire; (b) two 7-day food diaries to evaluate dietary intake during the peak of training (6-7 weeks prior to the event) and during the taper (1 week before the event); and (c) a menstrual status questionnaire. Body composition was assessed by calibrated digital scales and bioelectrical impedance analysis (BIA) 19 hours before the race and within 15 minutes of each individual completing the race. Blood and urine samples were
collected and analysed 19 hours before the race and within 15 minutes of each individual completing the race.

Complete medical information was available for 19 of the 27 recruited female triathletes (70%). Post-race plasma sodium concentrations were inversely related to body weight changes. A mean weight loss of $1.6 \pm 1.1\text{kg}$ ($p = 0.001$) equated to a percentage dehydration of $2.4 \pm 1.8\%$. One athlete from the study group had asymptomatic hyponatremic (post-race plasma sodium concentration 134mmol/L). The athlete was the smallest subject in the study (53.4kg), finished the race 1kg heavier and was moderately overhydrated by 1.9%. A lowered post-race plasma sodium concentration was also related to lowered haematocrit (Hct). The lowered Hct indicated that the fluid was retained in the extracellular space, which caused dilutional hyponatremia.

The athlete with the asymptomatic hyponatremia was the only athlete taking a progesterone only, oral contraceptive pill. Progesterone is believed to contribute to postovulatory fluid retention.

The mean daily energy intake (MDEI) results for the study group from the first and second 7-day food diaries were $10811 \pm 211\text{ kJ/day}$ ($2672 \pm 511\text{ kcal/day}$) and $10155 \pm 1820\text{ kJ/day}$ ($2487 \pm 410\text{ kcal/day}$) respectively. This was between 22-35\% lower than the expected daily energy expenditure (EDEE) $13874 - 15610\text{ kJ}$ ($3319 - 3734\text{ kcal}$). It has been suggested that the difference may be
due to inaccurate reporting of intake. The lower MDEI resulted in carbohydrate (CHO) intake expressed as grams of CHO per kilogram (kg) body weight (BW) per day appearing below the recommended 7-10g CHO/kg BW/day. All subjects had a fat intake below the 30-33%, and a protein intake above the 12-15% recommended for the general New Zealand population. Most of the athletes met or exceeded the Recommended Dietary Intake (RDI) for most micronutrients.

The study concluded that the likely cause of exercise associated hyponatremia was probably dilutional hyponatremia due to the consumption and retention of large volumes of low sodium or sodium free fluids before and during the race. Many subjects would benefit from individualised dietary advice to balance the increased energy expenditure of heavy training and to determine the volume of fluids needed for ultradistance events.
Acknowledgments

I would like to thank the following people for the valuable assistance they have provided during the completion of this research project:

Dr Clare Wall Lecturer, Institute of Food, Nutrition and Human Health, Massey University
Dr Dale Speedy Sports Physician, Sports Care, Manurewa, Auckland
Keith Thorpe Ironman New Zealand Race Director
Jane Patterson Ironman New Zealand Event Manager
Medlab Taupo Nurse/phlebotomists Beverley Garmey & Nancy Stratford
Medlab Hamilton Biochemistry Manager Graeme Broad

I would also like to thank the New Zealand Dietetic Association and the late Neige Todhunter, and Susie Cropper Heinz/Watties Australasia for providing funding for this research project.
Table of Contents

1 Introduction ... 1

2 Literature Review 3

2.1 Ironman Triathlon 3

2.1.1 New Zealand Ironman Triathlon 3

2.2 Water and Sodium Regulation 4

2.2.1 Water and Sodium Regulation Under Normal Conditions 4

2.2.2 Water and Sodium Regulation in Endurance Exercise 6

2.2.3 Sweating – Body Heat Dissipation During Exercise 6

2.2.4 Sweat Rate .. 7

2.2.5 Heat Acclimatisation 8

2.3 Fluid Balance During Exercise 9

2.3.1 Fluid Ingestion Before and During Exercise 9

2.3.2 Gastric Emptying 13

2.3.3 Intestinal Absorption 15

2.4 Hyponatremia .. 17

2.4.1 Clinical Features and Symptoms 18

2.4.2 Aetiology – Postulated Causes of Hyponatremia 18

2.4.3 Incidence .. 23

2.4.4 Incidence of Hyponatremia at New Zealand Ironman Triathlon over 3 Consecutive Years (1996-1998) 26
10A Individual Subjects' Calculated Resting Metabolic Rate (RMR) and Expected Daily Energy Expenditure (EDEE) Table 135

10B Individual Subjects' EDEE Values Compared with Mean Daily Energy Intake (MDEI) Results for the First, and Second 7-day Food Diaries 137
List of Tables

2.2 Incidence of Hyponatremia (HN) over Three Consecutive New Zealand Ironman Triathlons (1996 – 1998) 27

2.3 Incidence of Hyponatremia (HN) in Female Triathletes Competing in the 1996 and 1997 New Zealand Ironman Triathlon 29

5.1 Demographic Data for Each Subject 53

5.2 Pre-race Anthropometric Data for the Study Group 54

5.3 Post-race Anthropometric Data for the Study Group 54

5.4 Pre-race BIA for the Study Group 56

5.5 Pre- and Post-race Blood Pressure Readings for the Study Group 57

5.6 Results from Pre- and Post-race Blood Tests 58

5.7 Results from Pre- and Post-race Urine Tests 64

5.8 Individual Hormonal Assessment 65

5.9 Oral Contraceptive (OC) Details for Individual OC Users 66

5.10 Nutritional Data Collected 6-7-weeks Prior to the Event 67

5.11 Nutritional Data Collected 1-week Prior to the Event 67

5.12 Mean water intake for 1st and 2nd 7-day period 71

5.13 Analysis of the First 7-day Food Diary Micronutrient Intake and Comparison to the RDI for New Zealanders 73
5.14 Analysis of the Second 7-day Food Dairy Micronutrient Intake and Comparison to the RDI for New Zealanders 74

5.15 Temperature/Relative Humidity with Relation to Race Times 76

6.1 Incidence of Hyponatremia (HN) in Female Triathletes compared from 1996, 1997 and 2001 78

6.2 Equations for Estimating RMR 86

6.3 Estimation of RMR Using Mean Body Compositional Data 86

6.4 Expected Daily Energy Expenditure (EDEE) 87

6.5 Difference Between EDEE and Mean Daily Energy Intake (MDEI) 89

List of Figures

2.1 Fluid and Electrolyte Regulation 5

5.1 Pre- and Post-race Weight for the Study Group 55

5.2 Pre- and Post-race Plasma Sodium Concentration Comparisons 59

5.3 Post-race Plasma Sodium Concentration vs Percentage Dehydration 60

5.4 Difference in Serum Albumin for the Hyponatremic Athlete vs Mean Value for All Normonatremic Athletes 61

5.5 Difference in Serum Protein for the Hyponatremic Athlete vs Mean Value for All Normonatremic Athletes 62

5.6 Comparison of the Post-race Haematocrit and Haemoglobin Results 63

5.7 The First 7-day Food Diary Mean Energy Contribution 68

5.8 The Second 7-day Food Diary Mean Energy Contribution 69