Characterising Stickiness of Dairy Powders

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Bioprocess Engineering

At Institute of Technology and Engineering
Massey University, Palmerston North, New Zealand

Rajesh Chatterjee
2004
ACKNOWLEDGEMENT

My quest for knowledge in the dairy processing industry put me into the safe hands of Tony Paterson, my principle supervisor. Thank you for everything including all the minor tweaking rendered, particularly in difficult times, to achieve the project targets as well as my accomplishments. I consider myself privileged to get you as my mentor.

The research underlying this thesis has been sponsored by the Fonterra Research Centre, Palmerston North, New Zealand. Many thanks to David Pearce, my sponsor cum supervisor, for all the support, faith and time.

Thanks to John Bronlund, my secondary supervisor, for all his guidance and contribution into this project. I am especially grateful to Kylie Foster and Jeremy Mcleod, my fellow researchers, who helped me in all aspects of research at Massey University.

I would also like to thank Kenneth Bidlake, Tuan Troung, Greg Crofskey, Tony Foskett and Shane Harvey of Fonterra and Rod Bennett, Bruce Collins, John Edwards and Don McLean of Massey and many others for all the support and general helpfulness.

I wish to thank Foundation for Research Science and Technology (Tech New Zealand) for funding this project.

Finally sincere thanks to my wife - Bonny, my daughter - Hiya and our new-born son - Dhusar, who kept on smiling against all odds and sailing with me in little bumpy but blue sea of New Zealand. Thanks to our parents, relatives and friends, Shantanu in particular, for supporting this dream voyage.

Thank you, all.
ABSTRACT

The stickiness phenomenon, one of the major operational problems, in the spray drying process is strongly related to changes in the powder particle surface. During the course of drying, powder particles with intermediate moisture pass through a very cohesive and adhesive 'plastic' phase. This phase has shown to be influenced by surface composition, moisture content, particle size, manufacturing method, surrounding air humidity and temperature.

During spray drying, the powder particle experiences varied temperature and humidity conditions, which were replicated under controlled dynamic conditions to some extent in a 'Bench-top-scale Fluid Bed Rig' or in a 'Particle Gun Rig'. In these two set-ups, stickiness-end-point or deposition rates at a particular temperature and humidity combination were plotted to develop 'Stickiness Curves' after testing different dairy-based powders. Further improvements in the 'Particle Gun Rig' has been identified to minimise heat loss for future experimentation.

It has been demonstrated that the stickiness property is a surface phenomenon. This is governed by the composition of a particular powder, manufacturing methods and the temperature / humidity conditions surrounding the powder particles. The low fat powders (<42%) tested followed a single step 'Lactose based stickiness model' and high fat powders (>42%) followed a combined 'Fat and lactose based stickiness model'. The 'lactose based model' followed the predicted glass transition ($T_g$) trend of amorphous lactose, shifted by some degree (X) upwards, depending on the product composition or the amount of amorphous lactose present – to be specific.

These quick and easy methods to identify a safe and non-sticky operating window to minimise product adhesion to the equipment wall would be of huge benefit to the dairy industry in process optimization, as fore knowledge of likely difficulties and specified operating conditions will help efficient and economic operation. Attempts have been made to rectify the humidity tracking system in a spray drier and relate the 'stickiness curves' with its drying parameters. Further work should be done by taking commercial
trial runs at recommended or allowable operating conditions with reference to 'Stickiness Curves', in order to maximise the throughput and to minimise the drying cost without compromising the product quality. Looking into the effects of other variables like air velocity, angle of impact, different impact surface materials and particle size on powder stickiness would be of much interest to the dairy industry.
# TABLE OF CONTENTS

**ACKNOWLEDGEMENT**  

**ABSTRACT**  

**TABLE OF CONTENTS**  

**LIST OF FIGURES**  

**LIST OF TABLES**  

## CHAPTER 1 Project Overview

1.1 **INTRODUCTION**  

1.2 **STICKINESS DURING SPRAY DRYING**  

1.3 **PROJECT OBJECTIVES**  

1.4 **EXPECTED OUTCOME**  

## CHAPTER 2 Literature Review

2.1 **STICKING AND CAKING PHENOMENA**  

2.1.1 **MECHANISM OF ADHESION & COHESION**  

2.1.1.1 Interparticle Attraction  

2.1.1.1.1 Intermolecular forces  

2.1.1.1.2 Electrostatic forces (non-conductor)  

2.1.1.1.3 Electrostatic forces (conductor)  

2.1.1.2 Liquid bridges  

2.1.1.3 Solid bridges  

2.1.1.4 Wetting and Thermodynamic Adsorption  

2.1.1.5 Tack and sample rheology  

2.2 **FACTORS AFFECTING STICKINESS**  

2.2.1 **WATER**  

2.2.2 **TEMPERATURE**  

2.2.3 **VISCOSITY**
CHAPTER 3  Bench-top Scale Fluid-bed Stickiness Assessment Rig
CHAPTER 4  Measuring Stickiness of Dairy Powders in a Particle Gun Rig

4.1 INTRODUCTION 79
4.2 AIM AND OBJECTIVES 80
4.3 BASIC APPARATUS 81
4.4 EXPERIMENTAL METHODS 84
4.4.1 OPERATING PROCEDURE OF THE BUBBLE COLUMN HUMIDITY GENERATOR 84
4.4.2 TEST METHOD 88
4.5 CORRECTION OF EXPERIMENTAL DATA 90
4.5.1 NEED FOR CORRECTION 90
4.5.2 DEVELOPING THE CORRECTION MODEL USING STATISTICAL TOOLS 91
4.6 EXPERIMENTAL RESULTS AND DISCUSSION 93
4.6.1 AMORPHOUS LACTOSE 94
4.6.2 NUTRITIONAL POWDER – ANDEC 8811 97
4.6.3 CHEESE SNACK POWDER (COLOURED) – 3180 99
4.6.4 CHEESE POWDER (WHITE) – 3190
4.6.5 HIGH FAT CREAM POWDER (CP 70) 104
4.6.6 SKIM MILK POWDER – 6440 108
4.6.7 WHOLE MILK POWDER – 8051 111
4.6.8 STICKINESS – A SURFACE PHENOMENA 113
4.6.9 COMBINED $T - T_g$ TREND 114
4.7 CLOSURE 116

CHAPTER 5 Plant Study

5.1 INTRODUCTION 119
5.2 EXPERIMENTATION ON LONGBURN SPRAY DRIER 119
5.2.1 HUMIDITY CALCULATIONS 121
5.3 RESULTS AND DISCUSSION 126
5.4 CLOSURE 129

CHAPTER 6 Conclusions and Recommendations for Future Work

6.1 CONCLUSIONS 131

APPENDIX I PRODUCT COMPOSITION 135
NOMENCLATURE 137
REFERENCES 139
LIST OF FIGURES

FIGURE 2.2  $T_g$ of WPC hydrolysate at different water activities analysed by DSC (Kim et al., 2002) 32
FIGURE 2.3  CFD analysis of particle deposit concentration in a spray drier (Fry, 2001b) 47
FIGURE 3.1  Schematic diagram of FRC Bench-top-scale Fluid Bed Rig 51
FIGURE 3.2  Photo of FRC Bench-top-scale Fluid Bed Rig 52
FIGURE 3.3  Alpha Lactose crystals (A) and Amorphous Lactose powders (B) as observed under polarising microscope 57
FIGURE 3.4  Amorphous Lactose under polarising microscope after the stickiness run in the fluid-bed rig 58
FIGURE 3.5  Stickiness end points of amorphous lactose tested on fluid-bed rig 60
FIGURE 3.6  Stickiness curve of $\alpha$ and $\beta$ lactose tested on Fluid-bed rig 61
FIGURE 3.7  Stickiness curve of Supertab lactose tested on Fluid-bed rig 63
FIGURE 3.8  Stickiness curve of MPC 70 tested on Fluid-bed rig 64
FIGURE 3.9  Stickiness curve of MPC 85 tested on Fluid-bed rig 65
FIGURE 3.10  Moisture sorption isotherm for MPC85 at 20°C 67
FIGURE 3.11  Glass Transition Temperature ($T_g$) of MPC85, measured by DSC 70
FIGURE 3.12  Stickiness curve of WMP 8051 tested on Fluid-bed rig 72
FIGURE 3.13  Stickiness curve of AWMP 8490 tested on Fluid-bed rig 73
FIGURE 3.14  Stickiness curve of IWMP tested on Fluid-bed rig 75
FIGURE 3.15  Stickiness curve of all powders tested on Fluid-bed rig 76
FIGURE 4.1  Photo of Particle Gun Rig 82
FIGURE 4.2  Schematic diagram of Particle Gun Rig 83
FIGURE 4.3  Deposition of amorphous lactose tested on Particle Gun 95
FIGURE 4.4  Stickiness Curve of amorphous lactose tested on Particle Gun 96
FIGURE 4.5  Deposition of ANDEC powder tested on Particle Gun 97
FIGURE 4.6  Stickiness Curve of ANDEC powder tested on Particle Gun 98
FIGURE 4.7  Deposition of Cheese Snack (Coloured) powder - 3180 tested on Particle Gun 99
FIGURE 4.8 Stickiness Curve of Cheese Snack (Coloured) powder
FIGURE 4.9 Deposition of Cheese (White) powder - 3190 tested on Particle Gun
FIGURE 4.10 Deposition due to fat in Cheese powder – 3190 (White) tested on Particle Gun
FIGURE 4.11 Stickiness Curve of Cheese (White) powder - 3190 tested on Particle Gun
FIGURE 4.12 Deposition of CP 70 tested on Particle Gun
FIGURE 4.13 Deposition due to fat in CP 70 tested on Particle Gun
FIGURE 4.14 Stickiness Curve of CP 70 tested on Particle Gun
FIGURE 4.15 Deposition of SMP 6440 tested on Particle Gun
FIGURE 4.16 Stickiness Curve of SMP 6440 tested on Particle Gun
FIGURE 4.17 Stickiness Curve of SMP 6440 tested on Particle Gun including new experimental data
FIGURE 4.18 Deposition of WMP 8051 tested on Particle Gun
FIGURE 4.19 Stickiness Curve of WMP 8051 tested on Particle Gun and Fluid Bed
FIGURE 4.20 $T - T_g$ condition of Stickiness Curves of different powders Vs. their Amorphous Lactose content
FIGURE 5.1 Photo of coloured Cheese Powder deposition layer inside the powder conveying duct going out from the Fluidised Bed
FIGURE 5.2 Measured and predicted drying conditions for ANDEC powder on production
FIGURE 5.3 Predicted drying conditions for Snack Cheese Powder (3180) on production
FIGURE 5.4 Measured and predicted drying conditions for Cream Powder 70 on production
FIGURE 5.5 Predicted drying conditions for White Cheese Powder (3190) on production
## LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE 2.1</th>
<th>Glass transition temperature of anhydrous sugars, carbohydrate polymers and some foods (Bhandari and Howes, 2000)</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2.2</td>
<td>Methods for measurement of glass-transitions (Schenz, 1995)</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 2.3</td>
<td>Transition temperatures of different lactose forms corresponding to physical transformation analyzed by DSC (Drapier-Beche et al., 1997)</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 2.4</td>
<td>Comparison of various test methods currently used to assess food stickiness, adapted from (Adhikari et al., 2001)</td>
<td>39</td>
</tr>
</tbody>
</table>