Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Children’s Notation of Number Computations

A thesis presented in partial fulfilment of the requirements for the degree of Master of Educational Studies (Mathematics) at Massey University, Palmerston North, New Zealand

Linda Claire Warner
2003
ABSTRACT

This study examines the development of children's notational schemes including their use of informal nonstandard notations and formal standard notations. A Year 5/6 class of students, their teacher and the researcher were involved in a collaborative teaching experiment in the context of qualitative developmental research. 'Experiment' refers not to untried or unusual instruction, but rather to collaborative analysis and planning of the students' mathematical activity. In order to gain information about children's notation of number computations data was gathered through interviewing, observing, and analyzing work samples of six case study students.

This research study documents the emergence and development of notational schemes from children's problem-solving activities. The ways of symbolizing that emerged in the classroom evolved from the need to clarify and communicate thinking. Children represented their mathematical ideas using a variety of notational forms, both informal and formal. Within the classroom children used notational schemes as a 'thinking device' to help them make sense of their developing mathematical knowledge.

Classroom practice intellectually engaged children with key mathematical ideas. Children increasingly became engaged in genuine dialogical encounters making reference to their own and others' explanations as captured by the notational schemes. As a result, notational schemes served to support shifts in children's mathematical understanding and development.
I would like to acknowledge and thank the many people who made this study possible. Firstly, I wish to thank the teacher who so willingly and enthusiastically gave of herself and her time. Her professional and personal belief in this study contributed greatly to its successful implementation. I would also like to thank the students in her classroom for their keen participation and helpfulness during the mathematics sessions.

I wish to acknowledge and thank Dr. Glenda Anthony, my supervisor, who showed unstinting interest and provided invaluable professional support in the writing of this research study.

My gratitude is expressed to Massey University for awarding a Masterate Scholarship which assisted immensely.

My thanks are extended to friends and colleagues for their time, encouragement and advice. A special thanks to Nicola Johnson who interpreted my 'notations' to produce such a wonderful illustration for the title page.

Lastly, I must acknowledge my family, Alan, Jean, and Penelope, for their very special support and perpetual mentoring throughout this research study. Their unfailing confidence, long-suffering tolerance, and positive feedback have been truly appreciated.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 Background to the Study
1.2 Research Questions
1.3 Definition of Terms
1.4 Overview

CHAPTER 2: LITERATURE REVIEW
2.1 Introduction
2.2 Children's Mathematical Development
 2.2.1 Sociocultural learning
 2.2.2 Current reform practices
 2.2.3 Mathematical understanding
2.3 Language and Notation
 2.3.1 Communication of thinking
 2.3.2 Classroom discourse
2.4 Notational Schemes
 2.4.1 Developing children's notation
 2.4.2 Recording in numeracy programmes
2.5 Number Computations
 2.5.1 Contextual and numerical problems
 2.5.2 Conceptual structures of number
2.6 Inquiry-Based Classroom
 2.6.1 Learning environment
 2.6.2 The teacher's role
 2.6.3 Sense making
 2.6.4 Errors and misconceptions
2.7 Summary
CHAPTER 3: RESEARCH DESIGN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Developmental research</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Data Collection Methods</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Case study</td>
<td>36</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Interview</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The researcher</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>The Research Study: Settings, Sample, and Schedule</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The setting and the sample</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The research study schedule</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Quality Criteria</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Reliability</td>
<td>42</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Validity</td>
<td>43</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Ethical considerations</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary</td>
<td>45</td>
</tr>
</tbody>
</table>

CHAPTER 4: RECORDING MATHEMATICAL ACTIVITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Establishing Recording Conventions</td>
<td>47</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Redescribing and notating explanations</td>
<td>48</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Children’s recording ideas</td>
<td>49</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Making connections</td>
<td>51</td>
</tr>
<tr>
<td>4.2.4</td>
<td>So what makes good recording?</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>The Development of Notational Schemes</td>
<td>53</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Teacher’s notational scheme</td>
<td>53</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Mental vs written algorithms</td>
<td>55</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Using iconic symbols to solve problems</td>
<td>56</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Standardizing notation</td>
<td>56</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Errors and misconceptions</td>
<td>57</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Window into thinking</td>
<td>58</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Children redescribing and notating others’ solutions</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Addition Problems</td>
<td>61</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Recognizing ‘same’ mathematical solutions</td>
<td>61</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Comparing and contrasting mathematical solutions</td>
<td>66</td>
</tr>
<tr>
<td>4.4.3</td>
<td>What counts as a ‘different’ mathematical solution?</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Subtraction Problems</td>
<td>69</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Recognizing ‘same’ mathematical solutions</td>
<td>69</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Comparing and contrasting mathematical solutions</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Reasoning</td>
<td>74</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Is there a ‘better’ strategy?</td>
<td>74</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Comparison problems</td>
<td>78</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Justification</td>
<td>81</td>
</tr>
</tbody>
</table>
CHAPTER 5: CASE STUDIES

5.1 Introduction
5.2 Jess
 5.2.1 Summary of strategies and justifications
 5.2.2 Notation
5.3 Sue
 5.3.1 Summary of strategies and justifications
 5.3.2 Notation
5.4 Jack
 5.4.1 Summary of strategies and justifications
 5.4.2 Notation
5.5 Rob
 5.5.1 Summary of strategies and justifications
 5.5.2 Notation
5.6 Maggie
 5.6.1 Summary of strategies and justifications
 5.6.2 Notation
5.7 Simon
 5.7.1 Summary of strategies and justifications
 5.7.2 Notation
5.8 Summary of Case Studies

CHAPTER 6: DISCUSSION AND CONCLUSION

6.1 Introduction
6.2 The Role of Notation in Children’s Mathematical Learning
6.3 The Complex Nature of Teaching and Learning
 6.3.1 Forms of notation
 6.3.2 Introducing notational schemes
 6.3.3 Modelling
 6.3.4 Differentiating strategies and notational schemes
 6.3.5 The teacher and the numeracy programme
6.4 Further Research
6.5 Concluding Thoughts

BIBLIOGRAPHY
APPENDICES:

Appendix A: Interview Questions (Pre-Unit) .. 161
Appendix B: Interview Questions (Post-Unit) .. 163
Appendix C: Developmental Research Cycle ... 166
Appendix D: The Number Framework ... 168

LIST OF TABLES:

4.1 Problem-solving Strategies and Selected Notation .. 63
4.2 Summary of Strategies Used by Class Members .. 68

LIST OF FIGURES:

2.1 Overview of written recording in ‘The Number Framework’ 21
(Ministry of Education, 2002a, pp. 13-15)
3.1 Aspects of the developmental research cycle ... 34
(Gravemeijer, 1995, cited in Cobb, 2000b, p. 315)
3.2 Developmental research: a cumulative cyclic process 35
(Gravemeijer, 2001, p. 153)
4.1 Modelling Book ... 48
4.2 Notating partitioning of numbers (1010 strategy) .. 53
4.3 Notating ‘First Number – tens – ones’ (N10 strategy) 54
4.4 Wall display of strategies ... 66
4.5 Think Mats ... 74
4.6 Group word problems .. 78