Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CONTINUOUS BUTTERMAKING - A PROCESS

CAPABILITY STUDY

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Industrial Management at Massey University

Dean Thomas John Stockwell
1972
"If you can measure that of which you speak, and you can express it by a number, you know something of your subject, but if you cannot measure it, your knowledge is meagre and unsatisfactory"

Lord Kelvin.
A process capability study was conducted on a Continab MC 30 continuous buttermaking machine. The compositional parameters of butter moisture and salt content were considered.

The initial investigation showed that compositional variation with respect to time was significantly greater than variation within the product at any one instant. A significant correlation was found between variations in moisture and salt content and it was considered that variation in both moisture and salt content was strongly influenced by the variable performance of the salt slurry injection system.

The preceding results suggested examination of the salt slurry injection pressure and linear extrusion speed of the butter ribbon. A complex relationship was seen to exist between these factors and the product composition; possible explanations are considered.
I wish to thank the Supervisory panel Professor J.K. Scott, Dean of the Faculty of Food Science and Biotechnology; Dr. R. Dolby and Mr. S. Jebson of the New Zealand Dairy Research Institute, for their guidance during this work. I would like to include special thanks to Mr. K. Noonan, Department of Industrial Management and Engineering, who has helped in innumerable ways during the project and in particular for his help during sampling runs.

I am also grateful to Mr. M. Foot and Mr. D. Kingsbeer, Department of Industrial Management and Engineering, for assistance with measurement equipment and also during sampling runs.

I am indebted to the Manawatu Cooperative Dairy Company Limited for use of facilities during the study. In particular I would like to thank Mr. G.E. Baker, General Manager, and Mr. E. Petch, Manager of the Butter Factory, without whose support this project would not have been possible.

Thanks are also due to:—
Staff members of the Faculty of Food Science and Biotechnology for assistance in many ways.
Mr. R. Russell, New Zealand Dairy Research Institute for information with regard to continuous churn operation.
The Massey University Computer Unit for help in data processing.
Mr. P. Herbert of the Massey University Printery for printing of diagrams and figures.
Mr. R. Leitch of the Massey University Photographic Unit for photographs contained in the thesis.

I wish to acknowledge financial support from New Zealand Cooperative Dairy Company and Mauri Brothers and Thompson Limited.

Finally, I am most grateful to Mrs. B.R. Robertson for typing of the script and assistance during printing of the final copy.

D.T.J. Stockwell
(November, 1972)
TABLE OF CONTENTS

Acknowledgements
List of figures
List of tables

Section I
Introduction
Literature review
The economic importance of butter composition
The Contimab MC 30 continuous buttermaking machine
(The influence of machine and raw material factors.)

Section II
Methods of analysis

Section III Experimental Work
(i) A study of weight changes during cooling of samples in the gravimetric analysis of moisture content of butter.
(ii) A study of variations in the product composition with respect to the Contimab MC 30.
(iii) A study of product variation over a short time period.
(iv) A study of product variation over an extended time period.
(v) An examination of salt injection pump performance.
(vi) Frequency distribution analysis of product composition data
(vii) Conclusions.

Section IV An investigation of selected process variables
(i) Raw material factors.
 - cream temperature
 - cream fat content
 - cream acidity
(ii) Continuous churn machine variables.
 - linear extrusion speed
 - salt pump injection pressure
(iii) Discussion.
(iv) Conclusions.

Section V Suggestions for further study

Section VI Conclusions

Appendix I Numerical results for weight changes during cooling.

Appendix II Summary of analysis of variance for slice samples.
Appendix III Analysis of results using Cumulative Sum (Cusum) techniques.

Appendix IV Salt slurry injection pump performance.

Appendix V Normality calculation for frequency distribution of moisture and salt data.

Appendix VI Summary of data other than butter moisture and salt values.

Appendix VII Listing of selected computer programs.

Bibliography
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph of Return (cents/lb. fat) vs. Mean Moisture Content, for selected standard deviation of moisture values.</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Schematic diagram of plant layout.</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Schematic diagram of the Continab MC 30 continuous buttermaking machine.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Graph of Temperature (°F) vs. Scale Reading for calibration of Varian Chart recorder.</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Location sampling scheme used in slice analysis.</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Continuous block sample results.</td>
<td>45</td>
</tr>
<tr>
<td>7a</td>
<td>Graph of Moisture Content (%) vs. Time (minutes) (24/11/71).</td>
<td>50</td>
</tr>
<tr>
<td>7b</td>
<td>Graph of Salt Content (%) vs. Time (minutes) (24/11/71).</td>
<td>50</td>
</tr>
<tr>
<td>8a</td>
<td>Moisture Cusum Chart (24/11/71)</td>
<td>51</td>
</tr>
<tr>
<td>8b</td>
<td>Salt Cusum Chart (24/11/71)</td>
<td>51</td>
</tr>
<tr>
<td>9a</td>
<td>Graph of Moisture Content (%) vs. Time (11/3/72)</td>
<td>55</td>
</tr>
<tr>
<td>9b</td>
<td>Graph of Salt Content (%) vs. Time (11/3/72)</td>
<td>55</td>
</tr>
<tr>
<td>10a</td>
<td>Moisture Cusum Chart (11/3/72)</td>
<td>56</td>
</tr>
<tr>
<td>10b</td>
<td>Salt Cusum Chart (11/3/72)</td>
<td>56</td>
</tr>
<tr>
<td>11a</td>
<td>Graph of Moisture Content (%) vs. Time (minutes) (6/4/72)</td>
<td>58</td>
</tr>
<tr>
<td>11b</td>
<td>Graph of Salt Content (%) vs. Time (minutes) (6/4/72)</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>Graph of Moisture Content (%) vs. Salt Content (%) (6/4/72)</td>
<td>59</td>
</tr>
</tbody>
</table>
13a Moisture Cusum Chart (6/4/72) 60
13b Salt Cusum Chart (6/4/72) 60

14a Graph of Moisture Content (%) vs. Time (minutes) (7/12/71) 63
14b Graph of Salt Content (%) vs. Time (minutes) (7/12/71) 63

15 Graph of Moisture Content (%) vs. Salt Content (%) (7/12/71) 64

16a Moisture Cusum Chart (7/12/71) 65
16b Salt Cusum Chart (7/12/71) 65

17a Frequency Distribution Histogram for Moisture Values 70
17b Frequency Distribution Histogram for Salt Values 70

18 Graph of Cream Temperature (scale units) vs. Time (minutes) (7/2/72) 76

19a Graph of Moisture Content (%) vs. Time (minutes) (7/2/72) 77
19b Graph of Salt Content (%) vs. Time (minutes) (7/2/72) 77

20a Graph of Cream Fat Content (%) vs. Time (minutes) (7/2/72) 85
20b Graph of Cream Acidity (% Lactic Acid) vs. Time (minutes) (7/2/72) 85

21a Apparatus used in measurement of Ribbon Speed 96
21b Apparatus used in measurement of salt slurry injection pressure 96

22 Graph of Ribbon Speed (pulses/second) vs. Time (minutes) (6/4/72) 98

23 Ribbon Speed Cusum Chart 99

24a Graph of Moisture Content (%) vs. Time (minutes) (16/5/72) 102
24b Graph of Salt Content (%) vs. Time (minutes) (16/5/72)

25a Moisture Cusum Chart (16/5/72)
25b Salt Cusum Chart (16/5/72)

26 Graph of Ribbon Speed (pulses/second) vs. Time (minutes) (16/5/72)

27 Graph of Salt Pump Pressure (units) vs. Time (minutes) (16/5/72)

28 Ribbon Speed Cusum Chart (16/5/72)

29 Salt Pump Pressure Cusum Chart (16/5/72)

30a Graph of Moisture Content (%) vs. Time (minutes) (22/5/72)
30b Graph of Salt Content (%) vs. Time (minutes) (22/5/72)

31a Moisture Cusum Chart (22/5/72)
31b Salt Cusum Chart (22/5/72)

32 Graph of Ribbon Speed (pulses/second) vs. Time (minutes) (22/5/72)

33 Graph of Salt Pump Pressure (units) vs. Time (minutes) (22/5/72)

34 Ribbon Speed Cusum Chart (22/5/72)

35 Salt Pump Pressure Cusum Chart (22/5/72)

36a Graph of Moisture Content (%) vs. Time (minutes) (26/5/72)
36b Graph of Salt Content (%) vs. Time (minutes) (26/5/72)

37a Moisture Cusum Chart (26/5/72)
37b Salt Cusum Chart (26/5/72)
38 Graph of Ribbon Speed (pulses/second) vs. Time (minutes) (26/5/72)

39 Graph of Salt Pump Pressure (units) vs. Time (minutes) (26/5/72)

40 Ribbon Speed Cusum Chart (26/5/72)

41 Salt Pump Pressure Cusum Chart (26/5/72)

42 Correlation – Scatter Diagram Examples
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Summary of Churning Factors and their effect on product composition</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>Typical Churn Operating Conditions</td>
<td>25</td>
</tr>
<tr>
<td>III</td>
<td>Results for moisture and salt content for slice samples (28/9/71)</td>
<td>38</td>
</tr>
<tr>
<td>IV</td>
<td>Results for moisture and salt content for like locations (28/9/71)</td>
<td>39</td>
</tr>
<tr>
<td>VI</td>
<td>Results for moisture and salt content for slice samples (28/10/71)</td>
<td>41</td>
</tr>
<tr>
<td>VII</td>
<td>Results for moisture and salt content for like locations (28/10/71)</td>
<td>42</td>
</tr>
<tr>
<td>VIII</td>
<td>Summary of results for the correlation coefficient between butter moisture content and salt content</td>
<td>53</td>
</tr>
<tr>
<td>IX</td>
<td>Data for the frequency distribution of moisture and salt values taken from four trials (25/11/71, 7/12/71, 21/12/71, 7/2/72)</td>
<td>69</td>
</tr>
<tr>
<td>X</td>
<td>Results for the correlation coefficient between values of cream fat content and butter moisture content - a displacement analysis</td>
<td>86</td>
</tr>
<tr>
<td>XI</td>
<td>Summary of results for the correlation coefficient between butter moisture content and cream fat content</td>
<td>87</td>
</tr>
<tr>
<td>XII</td>
<td>Frequency distribution for differences between duplicate analyses for cream fat content</td>
<td>89</td>
</tr>
<tr>
<td>XIII</td>
<td>Summary of results for the correlation coefficient between butter moisture content and cream acidity</td>
<td>87</td>
</tr>
</tbody>
</table>
XIV Frequency distribution for differences between duplicate analyses for cream acidity

XV Estimated measurement accuracy required for measurement of churn variables

XVI Summary of results for variables other than moisture and salt content