Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE DEVELOPMENT OF AMPEROMETRIC BIOSENSORS FOR THE DETECTION OF GLUCOSE, LACTATE AND ETHANOL

A thesis presented in partial fulfilment for the Degree of Masters of Science in Biochemistry at Massey University, Palmerston North

Leong Peng Goh
1996
Abstract

Amperometric biosensors, also commonly known as enzyme sensors or enzyme electrodes, are a growing and very progressive area of research. Biosensors are analytical devices that contain a biological sensing element connected to a physical transducing element. The physical transducer "senses" the change in the biological element as it undergoes a chemical reaction. The physical transducer then converts chemical equivalents from the enzyme reaction in a dependent relationship to electrical equivalents that can be measured. Biosensors combine the power of electrochemistry with the specificity of enzymes to produce sensors that are specific to particular enzyme substrates. Some have wide specificities and others are quite narrow. Considering the wide range of enzymes available, the choice depends on the end use of these sensors.

The aim of the current study was to design biosensors for the detection of glucose, lactate and ethanol. The method for attaching enzymes to electrodes was based on the carbodiimide method. The carbodiimide method activates haeme which then is able to be covalently attached to enzymes. Enzyme-haeme conjugates were then allowed to absorb onto platinum electrodes by exploiting the knowledge that haeme can bind irreversibly to platinum by sharing pi-electrons with the d-orbitals of platinum. The enzymes involved were glucose oxidase, lactate dehydrogenase and alcohol dehydrogenase.

The use of flow injection analysis for evaluating biosensors was described and was found to be a fast, efficient method and the results were highly reproducible. In testing electrodes, the results of the present study showed it was possible to obtain current response that was dependent on the concentration of substrate when these enzyme electrodes were used. A particularly significant result in this study was the achievement of current responses that were dependent on substrate concentration in the absence of NAD\(^+\) for lactate and alcohol dehydrogenases using the substrates lactate and ethanol respectively. There is however much work to be done to improve the success rate of making these enzyme electrodes. Several factors were found to cause variable results whilst making and using these enzyme electrodes, such as the absorption of unbound enzyme to the sensing surface of the electrode that may produce significant current response, the formation of aggregated haeme during the enzyme-haeme conjugation process and most importantly, and the ability to make successful enzyme-haeme conjugates to be absorbed onto the sensing surface of the electrodes.
Acknowledgments

To thank everyone that was involved in this project and for making my time enjoyable during this difficult task. There were many people in the background whom had given me advice and help over the years. To these people, I say thank you very much.

But in particular my thanks goes to the Biosensor group at AgResearch, Palmerston North. They consisted of Dr James Dunlop, Dr Alan Hart, Thai Phung and Wendy Collier.

And my most sincere thanks for my three supervisors Dr Kathy Kitson, Dr James Dunlop and Dr Alan Hart for their encouragement and advice over some difficult periods and especially their patience.

Finally, I would like to thank my parents, the rest of the family and the Rowsell family for their support both financially and emotionally over the years.

Without the help of friends and families I would not have got this far.
Contents

Acknowledgments ii
Table of Contents iii
List of Abbreviations vi

1. Introduction

1.1. An Introduction to Biosensors 1
 1.1.1. Principles of biosensors 1
 1.1.2. Classification of Electrochemical Biosensors 2
 1.1.3. Controlled-Potential Experiments using Potentiostats 3
 1.1.4. The Working Electrode (Physical Transducer) 4
 1.1.5. Auxiliary Electrode 5
 1.1.6. Reference Electrode 5

1.2. Methods for Immobilising Enzymes onto Electrodes 6
 1.2.1. Immobilisation of Enzymes by Absorption 6
 1.2.2. Immobilisation of Enzymes by Physical Entrapment 7
 1.2.3. Immobilisation of Enzymes by Cross-linking 7
 1.2.4. Immobilisation of Enzymes by Covalent Binding 8

1.3. Introduction to the Current Research 8
 1.3.1. Use of Haeme for Enzyme Immobilisation 9
 1.3.2. What is Haeme? 10
 1.3.3. The Current Status of other Known Electron Mediators in Biosensors 10
 1.3.4. Flow Injection Analysis (FIA) 14
 1.3.5. Specific aims of this Research 14

2. Materials and Methods

2.1. Preparation of Buffers and Standard Solutions. 15
 2.1.1. Preparation of Phosphate Buffer 15
 2.1.2. Preparation of Tris/HCl Buffer 15
 2.1.3. Preparation of Standard Solutions 15
 2.1.3.1. D-Glucose 15
 2.1.3.2. Ethanol 16
 2.1.3.3. Methanol 16
 2.1.3.4. 2-Propanol 16
 2.1.3.5. L-Lactate 16

2.2. Preparation of Pt electrodes 17
 2.2.1. Preparation of Bare-Pt electrodes 17
 2.2.2. Preparation of Haeme-Pt electrodes 18
 2.2.3. Preparation of GO-Pt electrodes 18
 2.2.4. Preparation of Toray Paper electrodes 18

2.3. Preparation of FIA 19
 2.3.1. Instrumentation- Potentiostat 19
 2.3.2. Instrumentation- Chart Recorders 19

2.4. Conjugating Haeme with Enzymes 20
 2.4.1. Gelatine bound GO 20
2.4.2. Conjugating Haeme to GO
2.4.3. Conjugating Haeme to LDH
2.4.4. Conjugating Haeme to ADH

2.5. Method for Cyclic Voltammogram (CV) analysis

2.6. Enzyme assay systems
2.6.1. For the enzymatic detection of Glucose Oxidase
2.6.2. For the detection of Lactate Dehydrogenase
2.6.3. For the detection of Alcohol Dehydrogenase

2.7. Software used

3.1. Equipment Design - test beds for Biosensors
3.1.1. Determination of sample using Batch method
3.1.2. Flow Injection Analysis (FIA)

3.2. Reasons for the Development and Manufacture of Flow Cells
3.2.1. Version 1 Flow Cell
3.2.2. Version 2 Flow Cell
3.2.3. Version 3 Flow Cell

3.3. The Use of Toray Paper as an Alternative to Platinum Disk for Construction of Electrodes
3.3.1. Reasons for Replacing Platinum with Toray Paper
3.3.2. Design of Electrodes Incorporated with Toray Paper
3.3.3. Incorporation of Toray paper into FIA
3.3.4. Improving Electrical contact between Toray Paper and Potentiostat

3.4. Discussion

4.1. Glucose Analysis Using Glucose Oxidase Electrodes

4.2. Use of Gelatine and Glucose Oxidase on Platinum Electrodes in a FIA System

4.3. Glucose Oxidase-Haeme Conjugated Electrodes (Conjugate-GO)

4.4. Evaluation of Viability of Conjugate-GO Electrodes Compared to Gelatine-GO Electrodes over a Five Day Period
4.4.1. Performance of Conjugate-GO for amperometric glucose detection between the ranges of 20 mM and 200 mM glucose
4.4.2. Performance of Conjugate-GO for amperometric glucose detection between the ranges of 0 mM and 25 mM glucose
4.4.3. Ratio of sensor response to measured Enzyme activity

4.5. The Effect of Long Term Storage on Viability of Conjugate-GO

4.6. Confounding Problems associated with Conjugate-GO Electrodes
4.6.1. Is the Signal Response due to Enzyme Absorption directly onto Pt or Is it due to the Response from Conjugate-GO linked absorbed onto the Pt surface?
4.6.2. Analysis of the Results from Spectrophotometric Analysis of Conjugate
4.6.3. Making Haeme Active Esters
4.6.4. Monitoring the Progress of Conjugate-GO after Purification through Sephadex G-25.

4.7. Analysis of Cyclic Voltammograms for distinguishing between Conjugate-GO and GO-Pt.
<p>| 4.7.1. What is Cyclic Voltammetry? | 69 |
| 4.7.2. Why were Cyclic Voltammograms used? | 70 |
| 4.7.3. How Cyclic Voltammogram data are Collected and Assessed | 71 |
| 4.7.4. Comparing Results of Cyclic Voltammograms different Conditions of Electrode Absorption | 72 |
| 4.8. Discussion | 75 |
| 5.1. Lactate Analysis Using Lactate Dehydrogenase Electrodes | 81 |
| 5.2. Control Experiments for Lactate Dehydrogenase Electrodes | 84 |
| 5.2.1. Sensor Response and Cyclic Voltammogram (CV) of Haeme-Pt electrodes in the Presence of L-Lactate | 84 |
| 5.3. Conjugating Haeme to Lactate Dehydrogenase (Conjugate-LDH) | 86 |
| 5.3.1. UV-Vis determination of Conjugate-LDH | 87 |
| 5.3.2. Cyclic Voltammograms of Conjugate-LDH | 88 |
| 5.3.3. Conjugate-LDH in a FIA for Lactate determination | 89 |
| 5.4. Unsuccessful Conjugate-LDH Electrodes | 92 |
| 5.5. Discussion | 94 |
| 6.1. Ethanol Analysis Using Alcohol Dehydrogenase Electrodes | 98 |
| 6.2. Determination of Ethanol using Conjugate-Alcohol Oxidase (Conjugate-AO) Electrodes | 98 |
| 6.2.1. Electrochemical measurements of Conjugate-AO for the determination of Ethanol concentration | 99 |
| 6.3. Determination of Ethanol using Conjugate-Alcohol Dehydrogenase (Conjugate-ADH) Electrodes | 100 |
| 6.3.1. Evaluation of Conjugate-Alcohol Dehydrogenase Electrodes | 102 |
| 6.4. Experiments Performed to show Interaction or Non-interaction of other Substances | 109 |
| 6.4.1. Interaction of Ethanol, Methanol and 2-Propanol on Conjugate-ADH electrodes | 109 |
| 6.4.2. Interaction of Ethanol, Methanol and 2-Propanol on Haeme-Pt electrodes | 110 |
| 6.4.3. Interaction of Ethanol, Methanol and 2-Propanol on Bare-Pt electrodes | 111 |
| 6.5. Discussion | 113 |
| 7.1. Discussion and Conclusions | 116 |
| 8. References | 124 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td>AO</td>
<td>Alcohol oxidase</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammogram</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>GO</td>
<td>Glucose oxidase</td>
</tr>
<tr>
<td>HS</td>
<td>6-hydroxysuccinimide</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LOD</td>
<td>Lactate oxidase</td>
</tr>
<tr>
<td>NAD<sup>+</sup></td>
<td>β-nicotinimide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>β-nicotinimide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>R.O. water</td>
<td>Reverse osmosis water</td>
</tr>
<tr>
<td>TLC plates</td>
<td>Thin layer chromatography plates</td>
</tr>
</tbody>
</table>