Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
INFLATABLE INNOVATION – DEVELOPING
AN INFLATABLE SEA KAYAK

A thesis presented in fulfilment of the requirements for the degree of Masters In
Manufacturing and Industrial Technology at Massey University, Turitea, Palmerston
North, New Zealand.

Elizabeth Watkins (nee Ussher)
2003
ABSTRACT

There are many kayaks available and many of these are sea kayaks or inflatable kayaks. During an investigation by this researcher (referred to throughout this document in the first person), of the current sea kayaking market, a gap was identified for a sea kayak that was lightweight, portable and capable of touring and expeditions. An inflatable kayak often offers the initial two features of being lightweight and portable. The additional features of being capable of touring and expeditions, however, were the area of concentration.

The problem was approached through a combination of expertise, facilities and finance provided by an inflatable boat manufacturer, Incept Marine Ltd (Incept), an experienced sea kayaker (Audrey Sutherland), and a fellow (this researcher), supported by a Graduate in Industry Foundation (GRIF) scholarship, payable over 12 months.

The objectives of the project were to produce an inflatable sea kayak capable of carrying the equipment required for expeditions, be reliable, and have features that were found in most hardshell sea kayaks. Features for development included room for storage, a deck and a rudder to ease steering. In addition the inflatable sea kayak needed to perform better than most inflatables that were on the market, as they were often slow due to a lack in strength and rigidity. Stability was important and just as a whitewater kayak should be able to negotiate its way through rapids on a river, a sea kayak should be able to guide itself over waves and cover the distances it was expected to travel, while keeping the paddler safe.

The detail required in the pattern and processes could only be known by those with experience in the industry who had learnt to foresee potential problems. There was little room for error, right from the pattern design to the small but often essential processes that made Incept boats recognised around the world for their quality. It was the small and sometimes obvious areas that caused problems; for example, having to trust other manufacturers' specifications, which could lead to glues becoming
susceptible to humidity and heat after a prolonged time, or the need for pressure release valves in order to fix I-beams.

The final prototype was a synergy of ideas and experience brought together to form an inflatable kayak that had characteristics to fit a consumer market wanting a kayak for paddling in exposed and open water environments. The direction and input from an experienced sea kayaker moved the project to an area that could not have been reached without considerably more market research.

Working in a small innovative business created its own set of difficulties to be overcome in such a project. However, it also allowed involvement from everyone in the company to input into the outcome of the project.

The project ended successfully with two working prototypes known as the Incept inflatable sea kayak K40 (K40).
To attain serious speeds with limited power, it is more efficient to travel completely underwater, or in the air above it. As land creatures, we are unable to successfully do either in a self propelled and sustainable manner, so we are stuck on the surface.

(Dickson, 1996, p.42).
ACKNOWLEDGEMENTS

With ongoing flitting backward and forward between Taihape and Palmerston North for almost 11 months during 2000, the project was finally drawn to a close. Some would say; better late than never... it certainly took a long time, and I am sure some people thought I would never make it.

With thanks to Foundation for Research Science and Technology, a GRIF scholarship set the project in motion, we set out to develop an inflatable sea kayak in conjunction with the team at Incept Marine Ltd in Taihape. At the end of 12 months we definitely had made progress in looking at the market and coming up with a working prototype. By the end of the project we sent one of the final prototypes over to our “target market,” Audrey Sutherland, who provided information and feedback throughout the project as well as her own evaluation of the project. All of who made the project possible.

It wasn't too hard to keep on track until a full time job came along, and progress slowed remarkably. That has to be where I begin; not only would I like to thank Harvey Barraclough and Ralph Ball for their help but also their seemingly gracious patience with the time that it has taken to submit this thesis. Harvey and Ralph have had the onerous task of being my project supervisors. During the time I spent in Taihape through till now they have been on call to hear about my difficulties, successes, provide advice and slowly encourage progress on the imminent thesis. Thank you for your patience.

I would like to acknowledge Rodney Adank, my Product Development lecturer and tutor through my undergraduate degree in Product Development who initially convinced me of the opportunity to do a Masterate. Even though he moved on to Wellington during the project, he definitely encouraged me in the early stages of the project while he was at the Turitea Campus.

Many things have changed in my life since the beginning of this project, including changing my name along with gaining a husband. His own temptation overcame him
as initially he promised not to propose until I had finished... we got married in January 2002. His pleasure in hearing that I no longer “have to work on my thesis this weekend” will be immense.

And my parents; thanks Mum for always encouraging me no matter what, and Dad for making sure that I follow through with the things that I start. You have been very supportive of me, given me great advice (although I am sure you thought it sometimes went in one ear and out the other) and never given up on me.

“Perseverance must finish its work so that you may be mature and complete, not lacking anything.” James 1:4 NIV

Whaia e koe ki te iti kahurangi; ki te tuohu koe, me maunga teitei
Seek the treasure you value most dearly: if you bow your head, let it be to a lofty mountain. (www.maori.org.nz/quote.htm, 2003)
CONTENTS

ABSTRACT .. 2

ACKNOWLEDGEMENTS ... 5

CONTENTS .. 7

LIST OF FIGURES ... 11

LIST OF TABLES ... 13

1 INTRODUCTION ... 14

1.1 INCEPT MARINE LTD ... 15

 1.1.1 History ... 15

 1.1.2 Why they were interested in the GRIF scheme? .. 16

 1.1.3 Product Range ... 16

1.2 THE PROJECT ... 17

 1.2.1 GRIF Funding ... 17

 1.2.2 Massey Involvement .. 17

1.3 SEA KAYAKS .. 17

2 INITIAL INVESTIGATION ... 19

2.1 MANUFACTURING TECHNIQUES .. 19

 2.1.1 Thermo bonding or hot air welding .. 19

 2.1.2 High Frequency (HF) Welding .. 20

 2.1.3 Glueing ... 22

 2.1.4 The need for practical understanding .. 24

2.2 MATERIALS ... 26

2.3 FACTORY LAYOUT ... 31

2.4 LITERATURE REVIEW .. 33

 2.4.1 History of sea kayaks and inflatable kayaks .. 33

 2.4.2 Small boat design .. 35

 2.4.3 Inflatable craft design .. 47

 2.4.4 Solidworks and 3D modelling ... 49
LIST OF FIGURES

FIGURE 1 - KEY FEATURES OF A SEA KAYAK ... 18
FIGURE 2 - THERMO WELDING ROLLERS FEEDING MATERIAL .. 20
FIGURE 3 - GLUEING UP THE BOW OF A KAYAK .. 23
FIGURE 4 - AIR TIGHT CLOTHS ... 27
FIGURE 5 - INCEPT FACTORY PROCESS FLOW CHART .. 31
FIGURE 6 - SKETCH OF FACTORY LAYOUT ... 32
FIGURE 7 - BASIC HULL SHAPES (BYDE, 1975, P.147) .. 36
FIGURE 8 - DIFFERENCE IN ACTUAL AND WATERLINE LENGTH 37
FIGURE 9 - SECONDARY STABILITY .. 40
FIGURE 10 - EXAMPLE OF A PATTERN FOR A KAYAK .. 48
FIGURE 11 - COMPARISON OF LENGTH AND BEAM OF SINGLE AND DOUBLE SEA KAYAKS. ... 53
FIGURE 12 - ROTATIONALLY MOULDED PLASTIC SIT-ON-TOP SEA KAYAK (YAK BOARD, PACIFIC KAYAK, PRODUCT BROCHURE, 2002) .. 57
FIGURE 13 - RADICAL SHAKESPEARE CRAFT (BOATING NEW ZEALAND, DECEMBER, 2000, P.91) .. 58
FIGURE 14 - KLEPPER FOLDING KAYAKS (KLEPPER FALTBOOTE PRODUCT BROCHURE FROM AUCKLAND CANOE CENTRE, AUCKLAND) .. 66
FIGURE 15 - PRESSURE INSIDE CIRCULAR TUBE ... 70
FIGURE 16 - LOADING OVER A 4 METER LENGTH .. 71
FIGURE 17 - VALVES USED ON INFLATABLE SEA KAYAK .. 72
FIGURE 18 - SEAL EDGE LINED WITH V TAPE .. 72
FIGURE 19 - ROPE BEEKETS (FROM SCOPREGA PRODUCT SHEET, ITALY) 74
FIGURE 20 - STERN CLOSURE WITH BECKETS FOR RUDDER TO BE ATTACHED 74
FIGURE 21 - DOBBE RUDDER MOUNTED ON KAYAK ... 75
FIGURE 22 - SUB TASKS FOR DEVELOPMENT .. 77
FIGURE 23 - THE USE OF AN I-BEAM ... 79
FIGURE 24 - I-BEAM ILLUSTRATION INSIDE THE TUBE ... 79
FIGURE 25 - SKETCH OF I-BEAM DURING CONSTRUCTION .. 80
FIGURE 26 - I-BEAMS IN SERIES CREATING A MATTRESS EFFECT 81
FIGURE 27 - SIDE TUBE WITH POD ATTACHMENTS (ALSO REFER TO SECTION 10.1) 85
FIGURE 28 - SKETCH OF STANDARD FLOOR WITH SIDE TUBES 87
LIST OF TABLES

TABLE 1 - ADVANTAGES AND DISADVANTAGES OF PROCESSING METHODS 24
TABLE 2 - PROPERTIES OF MATERIALS USED IN AIRTIGHT CLOTH 30
TABLE 3 - AVAILABLE INFLATABLE KAYAKS ON THE WORLD MARKET 55
TABLE 4 - ADVANTAGES AND DISADVANTAGES OF INFLATABLE SEA KAYAKS 56
TABLE 5 - CONSUMER MARKETS FOR INFLATABLE KAYAKS 62
TABLE 6 - RECOMMENDATIONS FOR INFLATABLE KAYAK DESIGN 77
TABLE 7 - SUTHERLAND'S SPECIFICATIONS FOR AN INFLATABLE SEA KAYAK 94
TABLE 8 - KEY DIMENSIONS OF P3 ... 118