Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Introducing Cost-Effective Technology into a Small New Zealand Manufacturing Company

A Thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

Mark Caukill
2001
Abstract

Precision Manufacturing Limited (PML) is a small general engineering firm in Feilding, New Zealand. It is a general job shop (with a few specialty products) well known in the region for producing timely, high quality results.

Southchain Conveying Systems Limited was purchased in November of 1998 and is the only conveyor chain manufacturer in New Zealand. Soon after taking over Southchain, the company found it difficult to compete against chain imports in the New Zealand conveyor chain market with a manual operation. At this point in time Precision Manufacturing owner, Garth Thelin, contacted Massey University and the idea of a GRIF project was introduced.

The project commenced on November 1 1999 and ran for 14 months. The technical goals of the project were to reduce manufacturing costs by 30% and limit capital expenditure to $100,000.

A numerical process model was built using Microsoft Excel based around a combination of a Bill of Materials model and a Route Sheet model. After completing the process model, it was then analysed to obtain a list of first order savings projects in the company. Dollar savings vs. the estimated cost of implementation, as well as interdependencies between the issues, was used as a criteria to rank projects as first order.

Two projects were then chosen to be pursued: pin induction automation and roller induction heat treatment. The induction automation project covered the design of the mechanical apparatus, building and testing of working models, building of the production machinery, and the industrial control systems to integrate the mechanics to the induction heater. The roller induction heat treatment project investigated using the in-house induction heater to case harden the chain rollers and divest the company of a high external expense.

Six months after the project was completed the company had reduced its costs considerably and as a result, was more profitable. The key to this was the reduction in
roller costs. With better margins the company has been able to increase its sales and hence boost production levels. Being more profitable also means the company is in a better position to implement more cost saving measures and become more competitive in the market place.
Acknowledgements

I would like to acknowledge the staff and management of Precision Manufacturing Limited and Southchain Conveying Systems Limited. Every person in these companies always had both a smile and a helping hand for the scarfi in their midst.

My supervisors, Harvey Barraclough and Ralph Ball, have imparted to me their considerable knowledge and guidance over the two years since the beginning of the project. This project would not have been as successful, nor as enjoyable, as it was without their support and encouragement.

To my family - Nicky, Aleisha, Vanessa and Hamish: all these pages contain part of you too. Thanks for giving me the support, and the space, to do this.
Table of Contents

Background and Introduction .. 1
PMI ... 1
Southchain .. 1
Difficulties .. 2
Competition ... 3
Company Aims ... 3
The Project .. 5
Aims and Objectives ... 5
Introduction .. 5
 Literature Review ... 5
 Introduction to the Industry .. 5
Analyse Current Process ... 6
Improved Process ... 6
 Conceptual Design ... 6
 Decision Point ... 6
 Selected Workstation Upgrades .. 7
Assess .. 7
Document – Thesis and Works Documentation ... 7
 Document Preferred Solution .. 7
 Submit Thesis ... 7
The Cost Reduction Process ... 8
 Analyse Current Processes .. 8
Simulate Production Systems ... 10
 Simulation Options .. 10
Process Flow Diagrams ... 11
 Analyse Current Processes ... 11
Non-specific Chain Component Diagram .. 12
Bill of Material / Route Sheet .. 13
 Materials Costing Lookup .. 15
 Work Center Costings Lookup .. 16
 Internal Operations .. 16
 External Operations .. 16
Component Routes and Costs .. 17
Labour Unit Costings Lookup ... 20
BOM & Cost Rollup (Final product and component costing) 20
Model Updating Requirements ... 24
Identify First Order Savings ... 25
Process Model Outcome ... 25
Prediction of Savings .. 27
 Logo Stamp Automation .. 28
 12/15K Bush Roller Automation ... 28
 75T Press Automation and 150T Press Automation ... 28
 Inner Link Assembly Automation .. 29
 In-house Roller Induction Heat Treatment ... 29
 Pin Induction Automation .. 30
Recommended Actions for Improvement ... 31
Noddy’s Guides ... 32
Noddy’s Guide to Induction Heating ... 32
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southchain's Induction Heater</td>
<td>32</td>
</tr>
<tr>
<td>Induction Heating – A General Perspective</td>
<td>35</td>
</tr>
<tr>
<td>Eddy Currents</td>
<td>35</td>
</tr>
<tr>
<td>Hysteresis Losses</td>
<td>36</td>
</tr>
<tr>
<td>Virtual Sleeves</td>
<td>36</td>
</tr>
<tr>
<td>Skin Effect</td>
<td>38</td>
</tr>
<tr>
<td>Power and Temperature Distribution</td>
<td>38</td>
</tr>
<tr>
<td>Depth of Hardening</td>
<td>38</td>
</tr>
<tr>
<td>Coil Design</td>
<td>39</td>
</tr>
<tr>
<td>Noddy's Guide to Surface Hardening of Steel</td>
<td>40</td>
</tr>
<tr>
<td>Heat Treatment Greatly-Simplified</td>
<td>40</td>
</tr>
<tr>
<td>Noddy's Guide to Conveyor Chain</td>
<td>44</td>
</tr>
<tr>
<td>Plate</td>
<td>45</td>
</tr>
<tr>
<td>Pin</td>
<td>45</td>
</tr>
<tr>
<td>Bushing</td>
<td>45</td>
</tr>
<tr>
<td>Roller</td>
<td>46</td>
</tr>
<tr>
<td>Pin Riveting (non-Tsubaki)</td>
<td>46</td>
</tr>
<tr>
<td>In-house Roller Heat Treatment Investigation</td>
<td>48</td>
</tr>
<tr>
<td>Choice of Rollers</td>
<td>51</td>
</tr>
<tr>
<td>Testing of Roller Results</td>
<td>53</td>
</tr>
<tr>
<td>12/15K Trials</td>
<td>54</td>
</tr>
<tr>
<td>External Coil for Treating a Single Outer Surface</td>
<td>54</td>
</tr>
<tr>
<td>Twin Pancake Coils for Treating Two Parallel End Faces Simultaneously</td>
<td>55</td>
</tr>
<tr>
<td>Dual Coil for Treating Two Parallel Circumferential Surfaces Simultaneously</td>
<td>56</td>
</tr>
<tr>
<td>Internal Coil for Treating a Single Inner Surface</td>
<td>57</td>
</tr>
<tr>
<td>External then Internal Heat Treatment Process</td>
<td>57</td>
</tr>
<tr>
<td>Internal then External Heat Treatment Process</td>
<td>58</td>
</tr>
<tr>
<td>Internal then External with Internal Cooling</td>
<td>58</td>
</tr>
<tr>
<td>End Results</td>
<td>60</td>
</tr>
<tr>
<td>Untested Possible Solutions</td>
<td>61</td>
</tr>
<tr>
<td>6/7.5K Trials</td>
<td>61</td>
</tr>
<tr>
<td>External Coil for Treating a Single Outer Surface</td>
<td>61</td>
</tr>
<tr>
<td>Internal Coil for Treating a Single Inner Surface</td>
<td>61</td>
</tr>
<tr>
<td>Twin Pancake Coils for Treating Two Parallel Face Surfaces Simultaneously</td>
<td>61</td>
</tr>
<tr>
<td>Rectangular Coil</td>
<td>62</td>
</tr>
<tr>
<td>End Results</td>
<td>63</td>
</tr>
<tr>
<td>24/30K Trials</td>
<td>65</td>
</tr>
<tr>
<td>External Coil for Treating a Single Outer Surface</td>
<td>65</td>
</tr>
<tr>
<td>Potential of In-house Induction Heating Rollers</td>
<td>65</td>
</tr>
<tr>
<td>Summary of Roller Results</td>
<td>66</td>
</tr>
<tr>
<td>Induction Heater Automation</td>
<td>67</td>
</tr>
<tr>
<td>General Requirements</td>
<td>67</td>
</tr>
<tr>
<td>Planning & Design of Automation System</td>
<td>68</td>
</tr>
<tr>
<td>Feeder</td>
<td>68</td>
</tr>
<tr>
<td>Coil Feed & Exit Mechanism</td>
<td>68</td>
</tr>
<tr>
<td>Horizontal vs. Vertical</td>
<td>70</td>
</tr>
<tr>
<td>Horizontal Push Rod</td>
<td>70</td>
</tr>
<tr>
<td>Air Burst</td>
<td>70</td>
</tr>
<tr>
<td>Vertical Six Shooter</td>
<td>71</td>
</tr>
<tr>
<td>Coil Protection</td>
<td>74</td>
</tr>
</tbody>
</table>
Clamping ... 74
Fingers between Coil Windings .. 74
Ceramic beads .. 74
Coating ... 74
Sleeve ... 75
Indexing Mechanism .. 76
Electric Motor .. 76
Stepper Motor .. 76
Variable Speed Continuous Drive 76
Geneva indexing .. 77
Ratchet and Pawl .. 77
Drive Method .. 78
Rotary Cam System ... 78
Pneumatic Ram System .. 78
Frame .. 79
Hopper .. 79
Bulk to Singular Feed Mechanism 79
Vibratory Systems .. 79
Reciprocating Blade Systems .. 79
Hopper to Rotary Feeder Feed .. 82
Work piece Orientation .. 82
Work piece Transport – Tube or Track? 82
Drive Method – Cam or Ram? ... 83
Rotating Cam .. 83
Pneumatic Ram .. 83
Frame .. 84
Quenching System .. 84
Sluice .. 85
Quenching Sleeve .. 85
Chute ... 86
Collector Bin .. 86
Controller and Input Output ... 86
Controller .. 86
PC ... 87
PLC ... 87
Micro-controller ... 87
I/O (Sensors & Activators) .. 88
Interface with the Manual Induction Heater 88
Controller Specific I/O ... 90
Hopper Sensors/Actuators ... 91
Feeder Sensors/Actuators .. 91
Chute Sensors ... 92
What It Didn’t Have .. 92
Control Code .. 93
Coding Tools .. 93
Flow Charts .. 93
Sequential Truth Tables .. 93
I/O Map ... 93
Controller Simulator & Debugger 93
Code Design .. 94
List of Figures

Figure 1: Precision Manufacturing Ltd and Southchain Conveying Systems Ltd site in Feilding, NZ ... 1
Figure 2: Non-specific chain component diagram ... 12
Figure 3: Process model module interdependencies ... 15
Figure 4: The structure of the Bill of Material and Cost Rollup sheets 21
Figure 5: Diagram of a 'standard unit' of chain ... 21
Figure 6: Southchain's Raydyne / Northern Electronics induction heater 33
Figure 7: Illustration of eddy currents in a workpiece ... 35
Figure 8: Diagram of 'virtual sleeves' used to simplify the understanding of eddy current flow in a solid workpiece ... 37
Figure 9: Diagram illustrating eddy current in each successive sleeve 37
Figure 10: Basic types of coils (from Coil design and fabrication: Part 1) 40
Figure 11: Carbon-Iron equilibrium diagram .. 41
Figure 12: Time-Temperature-Transformation (TTT) graph ...) 43
Figure 14: Exploded view of a conveyor chain from US Tsubaki 44
Figure 15: Components used in the company's two most popular chains 47
Figure 16: Through heated rollers cut away using high speed diamond tip cutter 49
Figure 17: Explanation of the surfaces available on a roller .. 52
Figure 18: Example of a hardness map used to record treatment results 53
Figure 19: Multiturn, single place coil used for 12/15K outer circumference surface 55
Figure 20: Double pancake coil used for end face treatment ... 55
Figure 21: Dual coil (inner & outer) used in trialing simultaneously treating the inner and outer circumferential surfaces ... 56
Figure 22: An internal coil .. 57
Figure 23: Cooling mechanism used in 12/15K dual process trials 59
Figure 24: Composite 12/15K roller treated in dual process trials - including inner cooling .. 60
Figure 25: Rectangular coil used to treat the 6/7.5K rollers ... 62
Figure 26: Composite 6/7.5K rollers rolled through rectangular coil 64
Figure 28: An example of a moving coil configuration ... 69
Figure 29: Finger plate used in rotary feeder ... 71
Figure 30: Rotating chamber plate in the rotary feeder ... 71
Figure 31: An early version of the finger plate used in the rotary feeder. Later designs did not have the flaired finger ends ... 72
Figure 32: View of assembled components of the rotary feeder 72
Figure 33: The final production version of the rotary feeder ... 73
Figure 34: Ceramic sleeve used to stop contact between the coil and component 75
Figure 35: Illustration of a Geneva indexing mechanism .. 77
Figure 36: A ratchet and pawl much like that used in the rotary feeder 77
Figure 37: Pneumatic schematic of the system used ... 78
Figure 38: Arc reciprocating blade hopper feeder .. 80
Figure 39: A vertical path reciprocating blade hopper feeder. This design was implemented ... 81
Figure 40: Cutaway of the blade tip showing where the pins sit as the blade pushes upward through the bulk components .. 81
Figure 41: Hopper chute .. 83
Figure 42: The old quench bath .. 84
Figure 43: The queching sleeve .. 85
Figure 44: The quenching sleeve and carry chute in action. ... 86
Figure 45: The Australian built SPLAT SP10-8A microcontroller. 88
Figure 46: The induction automation control cabinet. .. 89
Figure 47: Rotary feeder model at work. ... 95
Figure 48: Model hopper feeder. ... 96
Figure 49: Quenching system on working rotary feeder model. 97
Figure 50: A failed sleeve and its consequences. .. 100
Figure 51: The assembly presses (red and grey - background) and spin riveter (blue - foreground) in-line for easier, more efficient production .. 102
Figure 52: Material trolley and bins. ... 103
Figure 53: Rumbler with hinged lid. .. 104
List of Tables

Table 1 .. 14
Table 2 .. 28
Table 3 .. 30
Table 4 .. 34
Table 5 .. 39
Table 6 .. 50
Table 7 .. 51
Table 8 .. 66