GASTROINTESTINAL INFECTION
IN A NEW ZEALAND COMMUNITY:
A ONE YEAR STUDY.

A thesis presented in fulfilment of the requirements
for the degree of Master of Science in Microbiology
at Massey University, Palmerston North.

Jacqueline Margaret Wright
1996
ABSTRACT

Diagnostic medical microbiology laboratories detect and identify pathogens in submitted specimens. The techniques used should maximise the detection of pathogens (sensitivity) while minimising the number of tests for their detection (efficiency). To achieve the best compromise between sensitivity and efficiency, it is necessary to have information on both the relative prevalence and clinical importance of various pathogens within the relevant community, and the relative efficiency of various detection techniques.

This investigation had three primary objectives: to establish what pathogens were associated with community-acquired gastrointestinal symptoms in the Eastern Bay of Plenty, and the incidence and relative importance of each; to compare the merits of various methods for detecting these pathogens (in those cases where more than one method was available); and to collect data from patients so as to identify potential sources and/or risk factors for infection.

997 faecal specimens from 716 episodes of illness were tested over a one year period. Patients completed a questionnaire on symptoms, and food and environmental exposures. Using one or more standard techniques, the specimens were tested for bacteria and parasites which may cause gastroenteritis. Specimens from young children were also tested for the presence of rotavirus.

The incidence rates of the various pathogens, expressed as a rate per 100,000 persons per year, were as follows: Blastocystis hominis, 358; Campylobacter species, 208; Giardia lamblia, 158; Yersinia species, 87; Cryptosporidium parvum, 67; Salmonella species, 62; Aeromonas species, 62; Dientamoeba fragilis, 29; Plesiomonas shigelloides, 21; Escherichia coli (E coli) O157, 4; Vibrio cholerae non-O1, non-O139, 4; and Shigella species < 4.

Faecal specimen macroscopic form, microscopic findings, season, and patient age showed little correlation with the presence of specific pathogens. Consequently the tests selected for the detection of pathogens in faeces should not be based on any of the above parameters. Furthermore, the symptoms associated with parasitic and bacterial infections were similar, so it is not possible to select the appropriate tests on this basis. The presence of rotavirus in patients older than five years was not investigated so incidence in the general population cannot be calculated. A study of all age groups for the
presence of this organism would be appropriate.

From the above findings, and an evaluation of the literature, it is recommended that all specimens should be examined for the following organisms and, on the basis of our observations, the most cost-effective method is shown in brackets: *Salmonella* (selenite enrichment subcultured to xylose lysine desoxycholate agar); *Shigella* (none were detected, so a cost-effective medium could not be determined), *Campylobacter* (5% sheep blood agar supplemented with 32 mg/l cefoperazone); *Yersinia* (*Yersinia* selective agar (YSA), plus selenite enrichment subcultured to YSA); *Giardia lamblia* (detection of antigen); *Cryptosporidium parvum* (detection of antigen).

While routine testing for *E coli* O157 is not recommended, laboratories should have the capability to test for this pathogen if a patient presents with haemolytic uraemic syndrome, thrombotic thrombocytopenic purpura or unexplained bloody diarrhoea. Likewise, routine culture for *Vibrio species* is not recommended; however, laboratories should test specimens using thiosulphate citrate bile salt sucrose agar if the requesting clinician suspects cholera, or the patient has a recent history of shellfish consumption. A trichome stain for *Dientamoeba fragilis* is recommended for patients with chronic gastrointestinal symptoms who are to be investigated for neoplastic and other non-infectious conditions. Pathogenic parasites other than those noted above were not detected. However, since such organisms are isolated in New Zealand, usually in association with overseas travel or institutionalisation, it is recommended that a trichrome stain and a faecal concentration technique should be performed on specimens from all cases of gastroenteritis who have recently travelled overseas or who are institutionalised. Close liaison between the laboratory and the clinician is essential to ensure appropriate selective testing for these less common pathogens.

The presence of *Blastocystis hominis* and Aeromonads should be reported, but the report should note that their pathogenicity is uncertain. *Dientamoeba fragilis* and *Plesiomonas shigelloides* are probably pathogenic, but further work is needed to clarify this point.

Correlation of data from the questionnaires and the laboratory findings identified the following risk factors: (the relative risk, 95% confidence interval and p-value are shown in the brackets). *Campylobacter species*: consumption of unpasteurised milk (4.67, 2.39 - 9.11, \(p = <0.001 \)); *Salmonella species*: overseas travel (7.20, 1.67 - 20.9, \(p = 0.040 \)), eating a barbecued meal (4.55, 1.37 - 15.12, \(p = 0.026 \)), eating shellfish (3.80, 1.18 - 12.21, \(p = 0.032 \)); *Yersinia species*: consumption of water from a home supply (3.46, 1.32
- 9.10, p = 0.016), handling cattle (4.88, 1.73 - 13.76, p = 0.008), handling sheep (14.80, 4.93 - 44.46, p = 0.001); Giardia lamblia: consumption of unpasteurised milk (3.93, 1.63 - 9.46, p = 0.011), attendance at a day care centre (2.70, 1.17 - 6.27, p = 0.033), handling cattle (3.39, 1.59 - 7.22, p = 0.005), handling horses (5.27, 1.85 - 14.97, p = 0.002); Cryptosporidium parvum: consumption of water from a home supply (5.08, 1.88 - 13.71, p = 0.002), consumption of unboiled water from a natural waterway (3.97, 1.29 - 12.24, p = 0.031), attendance at a day care centre (3.30, 1.06 - 10.22, p = 0.054), handling cattle (5.41, 1.88 - 15.58, p = 0.006), owning a cat (4.50, 1.02 - 19.91, p = 0.029); Plesiomonas shigelloides: eating shellfish (13.67, 1.44 - 130.13, p = 0.020); and Dientamoeba fragilis: consumption of unboiled water from a natural waterway (7.46, 1.71 - 32.48, p = 0.019).

The risk factors suggest the value of the following precautions to prevent gastrointestinal infection: maintaining a high standard of both personal hygiene (particularly in the rural environment) and environmental hygiene in areas that food is prepared; avoiding consumption of untreated water or unpasteurised milk; cooking animal-derived food thoroughly - especially barbecued food and shellfish; and washing hands thoroughly after animal contact. Persons with diarrhoeal symptoms should take particular care with personal hygiene. Those travelling overseas should be conscious of the risk associated with the consumption of food and water which is not properly cooked or treated.

These findings should assist New Zealand laboratories to optimise their approach to the detection of faecal pathogens and should also assist in formulating policy for prevention of infection by enteric pathogens.
ACKNOWLEDGEMENTS

This study was made possible by the funding contribution of the Ministry of Health and I am grateful to Michael Taylor and the Ministry for their support. Additional funding was received from the Lottery Grants Board and I acknowledge the contribution from this organisation.

Thank you to the management of the Whakatane Hospital for supporting the project by providing laboratory space, and to the commercial suppliers who all pruned their prices in order for me to meet budgets.

The staff at the Whakatane Hospital Laboratory were wonderful (as always) during the course of the study year. Harold, Karen and Mary cheerfully tolerated this intrusion on their already busy lives and I am grateful to them for inoculating all those stools to all that culture media. Glenys Travers, Gnani Ramadas and Aaron Ferguson who performed technical work for the study were all great to work with - both enthusiastic and dedicated. Russell Cole, who replaced me when I left Whakatane, kindly tolerated my weekend intrusions into what was now his lab so that I could complete the study. Thanks, Russell.

Thanks to the other Russell in my life. My long-suffering husband who long ago accepted things faecal as part of our relationship. He has spent weekends constructing collection kits; he chauffeured me to and from Whakatane on a fortnightly basis when we moved to Wellington, so that the study could go on; and he assisted on many occasions with data entry and checking. Thanks, dear.

Once I started work at ESR, I would slither out early on Fridays for my weekends in Whakatane and arrive back Mondays, weary. Thank you Carolyn, Helen and Dave for allowing this to happen.

Thank you to my supervisor, Professor John Clarke, who has been so helpful in pulling it all together.

Finally, thanks are extended to the Eastern Bay of Plenty clinicians for their support and to the patients who participated, without whom the study could not have happened.

Thanks heaps everyone.
CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF TABLES ix
ABBREVIATIONS x

1 INTRODUCTION 1

2 LITERATURE REVIEW OF METHODS AND APPROACHES FOR THE DETECTION OF PATHOGENS IN FAECES 3

2.1 Definition and significance of infectious gastroenteritis 3

2.2 Epidemiology and Transmission of infectious gastroenteritis 4

2.3 Diagnosis 5

3 MATERIALS AND METHODS 16

3.1 Culture media 16

3.1.1 5% sheep blood agar (SBA) 16

3.1.2 5% sheep blood agar plus cefoperazone (CAMP) 16

3.1.3 MacConkey agar with crystal violet (Mac) 16

3.1.4 Sorbitol MacConkey agar (SMAC) 17

3.1.5 Xylose lysine deoxycholate agar (XLD) 17

3.1.6 Hektoen enteric agar (Hek) 18

3.1.7 Thiosulphate citrate bilesalt sucrose agar (TCBS) 18

3.1.8 Yersinia selective agar (YSA) 19

3.1.9 Aeromonas selective agar (ASM) 19

3.1.10 Campylobacter blood-free selective agar (CCDA) 19

3.1.11 Selenite broth (Sel) 20

3.1.12 Gram negative broth (GN) 20

3.1.13 Glucose oxidation/fermentation (O/F) medium 20

3.1.14 Christensen’s urea agar 21

3.2 Bacterial identification tests 21

3.2.1 Gram Stain 21

3.2.2 Oxidase test 22

3.2.3 Glucose utilisation 22

3.2.4 O/129 sensitivity 22

3.2.5 Urease test 23

3.2.6 Confirmation of microaerophile status and growth temperature. 23

3.2.7 Hippurate hydrolysis. 23

3.2.8 Sensitivity to nalidixic acid and cephalothin. 24
3.2.9 *Escherichia coli* O157 latex agglutination test 24
3.2.10 *Salmonella* antigen identification. 25

3.3 Commercial kit identification of *Enterobacteriaceae* and *Vibrionaceae*. 25
3.3.1 Primary identification system 25
3.3.1.1 *The Identify system* 25
3.3.1.2 Use of the *Identify system* 27
3.3.2 Secondary Identification system 29

3.4 Rotavirus testing 32

3.5 Parasite detection methods 32
3.5.1 Direct wet preparation 32
3.5.2 Polyvinyl alcohol fixation 33
3.5.3 Formalin fixation 33
3.5.4 Trichrome staining 34
3.5.5 Formalin-ethyl acetate concentration 34
3.5.6 Modified Kinyoun acid fast stain for *Cryptosporidia* 35
3.5.7 *Giardia/Cryptosporidium* Direct Immunofluorescence 35
3.5.8 *Giardia* antigen enzyme immunoassay. 36

3.6 Laboratory Processing Methods 37
3.6.1 Culture processing: inoculation and incubation 37
3.6.2 Culture processing: reading of cultures 38
3.6.2.1 XLD/Mac/Hek 38
3.6.2.2 SMAC 39
3.6.2.3 SBA/ASM 39
3.6.2.4 TCBS 39
3.6.2.5 CAMP/CCDA 40
3.6.2.6 Organism Confirmation and Typing 40
3.6.3 Rotavirus testing 40
3.6.4 Parasite Screening 40

3.7 Study Community 41
3.8 Ethical approval 41
3.9 Patient Selection and Specimen/Data Collection 41
3.10 Data Analysis 42

4 RESULTS 44
4.1 Case and Organism data 44
4.1.1 General Case and organism data: 44
4.1.2 Group 1 case and organism data additional to that shown in Table 3 44
4.1.3 Group 2 case and organism data additional to that shown in Table 3 48
4.1.4 Case demographics and organism seasonality 48

4.2 Specimen findings 48
4.2.1 Specimen form and microscopy 48
4.2.2 Specimens/episodes yielding multiple organisms 48
4.2.3 Multiple specimens 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Method comparison</td>
<td>52</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sensitivity, specificity and costs associated with various detection methods</td>
<td>52</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Commentary on the detection methods for various microorganisms</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Symptoms and consequences of infection</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Risk factor analysis</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Incidence</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Specimen form and microscopy</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Age of patient</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Correlation of season with prevalence of pathogen</td>
<td>70</td>
</tr>
<tr>
<td>5.5</td>
<td>Mixed infections</td>
<td>71</td>
</tr>
<tr>
<td>5.6</td>
<td>Multiple Specimens</td>
<td>71</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of Methods of Organism detection</td>
<td>71</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Campylobacter</td>
<td>71</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Salmonella</td>
<td>73</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Shigella</td>
<td>74</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Yersinia</td>
<td>74</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Vibrio</td>
<td>75</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Escherichia coli O157</td>
<td>76</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Giardia</td>
<td>77</td>
</tr>
<tr>
<td>5.7.8</td>
<td>Cryptosporidium</td>
<td>78</td>
</tr>
<tr>
<td>5.7.9</td>
<td>Aeromonas</td>
<td>79</td>
</tr>
<tr>
<td>5.7.10</td>
<td>Plesiomonas</td>
<td>79</td>
</tr>
<tr>
<td>5.7.11</td>
<td>Dientamoeba</td>
<td>79</td>
</tr>
<tr>
<td>5.7.12</td>
<td>Blastocystis</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>Infection risks, signs, symptoms and consequences</td>
<td>80</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Campylobacter</td>
<td>80</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Salmonella</td>
<td>82</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Yersinia</td>
<td>83</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Rotavirus</td>
<td>84</td>
</tr>
<tr>
<td>5.8.5</td>
<td>Giardia</td>
<td>84</td>
</tr>
<tr>
<td>5.8.6</td>
<td>Cryptosporidium</td>
<td>85</td>
</tr>
<tr>
<td>5.8.7</td>
<td>Aeromonas</td>
<td>87</td>
</tr>
<tr>
<td>5.8.8</td>
<td>Plesiomonas</td>
<td>88</td>
</tr>
<tr>
<td>5.8.9</td>
<td>Dientamoeba</td>
<td>88</td>
</tr>
<tr>
<td>5.8.10</td>
<td>Blastocystis</td>
<td>89</td>
</tr>
<tr>
<td>5.9</td>
<td>Control and Prevention of Infection</td>
<td>91</td>
</tr>
</tbody>
</table>
6 CONCLUSIONS

7 APPENDICES
7.1 Appendix 1. Information, consent form and questionnaire included in the specimen collection kit
7.2 Appendix 2. Areas identified as requiring further investigation.

8 BIBLIOGRAPHY
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Epidemiological features of selected microorganisms responsible for symptomatic gastrointestinal infections</td>
<td>6 - 7</td>
</tr>
<tr>
<td>Table 2</td>
<td>Organism characteristics and diagnostic techniques for selected Group 1 and Group 2 gastrointestinal pathogens</td>
<td>8 - 10</td>
</tr>
<tr>
<td>Table 3</td>
<td>Total number of positive tests, cases, and incidence rates per 100,000 noted during a one year study in the Eastern Bay of Plenty</td>
<td>45</td>
</tr>
<tr>
<td>Table 4</td>
<td>The sex and age distribution of cases of gastrointestinal infection with Group 1 or Group 2 gastrointestinal pathogens detected in a one year study of 716 episodes of gastrointestinal illness in the Eastern Bay of Plenty</td>
<td>47</td>
</tr>
<tr>
<td>Table 5</td>
<td>Seasonality of episodes of infection with Group 1 and Group 2 gastrointestinal pathogens detected in a one year study of 716 episodes of gastrointestinal illness in the Eastern Bay of Plenty</td>
<td>49</td>
</tr>
<tr>
<td>Table 6</td>
<td>Macroscopic form and microscopic findings for stool specimens positive for Group 1 and Group 2 gastrointestinal pathogens, found during a one year study in the Eastern Bay of Plenty and for which this information was recorded</td>
<td>51</td>
</tr>
<tr>
<td>Table 7a</td>
<td>Methods found to be the most effective for the laboratory investigation of faeces for specific pathogens (based on the results shown in Table 7b)</td>
<td>53</td>
</tr>
<tr>
<td>Table 7b</td>
<td>Comparative positive yields, sensitivity, specificity, and costs in materials for detection methods for Group 1 and Group 2 gastrointestinal pathogens used in a study of 997 faecal specimens over a one year period in the Eastern Bay of Plenty</td>
<td>54 - 55</td>
</tr>
<tr>
<td>Table 8</td>
<td>Symptoms and consequences reported by all cases, and cases of infection with Group 1 and Group 2 gastrointestinal pathogens, who submitted faeces specimens for a one year study in the Eastern Bay of Plenty</td>
<td>60 - 61</td>
</tr>
<tr>
<td>Table 9</td>
<td>Significant associations with infection with specific Group 1 and Group 2 organisms compared with all other cases from whom the organism was not detected (non-cases) demonstrated by univariate analysis of exposures and risks of infection</td>
<td>62 - 67</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ACE acetamide
ADH arginine dihydrolase
ADO adonitol
Aeromonas Aeromonas species
ARA arabinose
ARG arginine
ASM Aeromonas selective agar
Blastocystis Blastocystis hominis
CAMP 5% sheep blood agar plus 32 mg/ L cefoperazone
Campylobacter Campylobacter species
CCDA Campylobacter blood-free selective agar
CEL cellibiose
CET cetrimide
citrate
coumarate
colistin
arginine control
concentrated wet preparation
Cryptosporidium Cryptosporidium parvum
desoxycholate citrate agar
Dientamoeba Dientamoeba fragilis
deoxyribonucleic acid
double stranded
direct wet preparation
Eastern Bay of Plenty
Escherichia coli Escherichia coli
enzyme immuno-assay
esculin
fermentation control
fluorescein isothiocyanate
gram
α-galactosidase
galacturonate
Gram negative enrichment broth
general practitioner
glucuronate
Giardia specific antigen
hektoen enteric agar
H₂S hydrogen sulphide
ID01, 02, 03 commercial bacterial identification kit: Identify trays 1, 2 and 3
IDP alkaline phosphatase
IF immunofluorescence
IND indole
INO inositol
KOH potassium hydroxide
l litre
LDC lysine decarboxylase
Mac MacConkey agar
MAL malonate (primary identification kit)
MAL maltose (secondary identification kit)
MAN mannitol (primary identification kit)
MAN mannose (secondary identification kit)
MEL melibiose
MLT maltose
MNT malonate (secondary identification kit)
µl microlitre
ml millilitre
mm millimetre
nm nanometre
ODC ornithine decarboxylase
O/F oxidation/fermentation test
ONAG β-D-glucosaminidase
ONPG β-D-galactosidase
PD phenylalanine deaminase
PLE palatinose
Plesiomonas Plesiomonas shigelloides
PNPG β-D-galactosidase
PPA phenylalanine
PSS permanent stained smear
PVA polyvinyl alcohol fixative
RAF raffinose
RBC red blood cells
RHA rhamnose
RNA ribonucleic acid
SAC sucrose (secondary identification kit)
SAL salicin
Salmonella Salmonella species
SBA 5% sheep blood agar
Sel selenite enrichment broth
Shigella Shigella species
SMAC sorbitol MacConkey agar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOR</td>
<td>sorbitol</td>
</tr>
<tr>
<td>SS</td>
<td>Salmonella/Shigella agar</td>
</tr>
<tr>
<td>SUC</td>
<td>sucrose (primary identification kit)</td>
</tr>
<tr>
<td>TCBS</td>
<td>thiosulphate citrate bilesalt sucrose agar</td>
</tr>
<tr>
<td>TRE</td>
<td>trehalose</td>
</tr>
<tr>
<td>TTR</td>
<td>tetrathionate reductase</td>
</tr>
<tr>
<td>URE</td>
<td>urease</td>
</tr>
<tr>
<td>VP</td>
<td>Voges Proskauer test</td>
</tr>
<tr>
<td>XLD</td>
<td>xylose lysine desoxycholate agar</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cells</td>
</tr>
<tr>
<td>Yersinia</td>
<td>Yersinia species</td>
</tr>
<tr>
<td>YSA</td>
<td>Yersinia selective agar</td>
</tr>
<tr>
<td>ZN</td>
<td>modified Kinyoun stain</td>
</tr>
<tr>
<td>5KG</td>
<td>5-ketogluconate</td>
</tr>
</tbody>
</table>