Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Genotyping of Human and Animal Isolates of *Giardia intestinalis*

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Microbiology at Massey University, Palmerston North, New Zealand

Errol Stephen Kwan
2002
ABSTRACT

Giardia intestinalis is an important protozoan parasite that infects humans and animals. It has been suggested that cattle may be a major source of human *Giardia* infection so a dairy farming region of New Zealand was investigated. This thesis uses three molecular methods to genotype *G. intestinalis* isolates obtained from human and animal faecal specimens collected in the Waikato region of New Zealand, to determine if giardiasis is a zoonotic disease.

Random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) fingerprinting techniques were initially assessed for their ability to genotype *G. intestinalis* isolates. “Clear cut” evidence of zoonosis could not be established by either method, due to a low sample number.

To determine the stability of the *G. intestinalis* genome an axenic culture of *G. intestinalis* trophozoites was stressed with toxic levels of metronidazole and the survivors, following a number of passages, were examined using AFLP and RAPD analysis. The DNA fingerprints were compared to those of the original wild-type with the results being indicative of an unstable *G. intestinalis* genome.

A third molecular method was employed, which amplifies a portion of the tandemly repeated ribosomal DNA (rDNA). Each cyst contains 512 head to tail tandem repeat copies of the *rRNA* gene made up of both conserved and variable regions. The use of nested primers increased the sensitivity and specificity of the PCR reaction allowing the amplification of a 505bp rDNA fragment. DNA sequence analysis and alignment of the amplified products facilitated the comparison of *G. intestinalis* isolates. The relationship of the sequence data was generated and displayed using Splitstree software indicating that zoonosis did occur.
ACKNOWLEDGEMENTS

Throughout my research there have been individuals that have been a great resource of information whom I would like to take the opportunity to acknowledge:

My supervisor, Dr George Ionas, who has been an endless supply of ideas and help.

The team members of the Protozoa Research Unit and MicroAquaTech, Cynthia Hunt, Anthony Pita and Rebecca Pattison, with their expertise in the screening of the faecal specimens, and Jim Learmonth who had the wonderful task of proof reading my work.

The help from Trish McLenachan and Leon Perrie was invaluable, especially in the early stages of my work.

The most important thank you has to go to my family who have supported me throughout my education.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1: REVIEW OF GIARDIA AND GIARDIASIS</td>
<td></td>
</tr>
<tr>
<td>1.1 History</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Biology</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Morphology</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Taxonomy</td>
<td>2</td>
</tr>
<tr>
<td>1.2.3 Life Cycle</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Giardiasis (The Disease)</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 Symptoms</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 Pathophysiology</td>
<td>5</td>
</tr>
<tr>
<td>1.3.3 Transmission</td>
<td>6</td>
</tr>
<tr>
<td>1.3.4 Treatment</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Molecular Analysis</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Aims</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2: MATERIALS AND METHODS</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Collection of Giardia for DNA Extraction</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Reviving Cryopreserved Giardia intestinalis Trophozoites</td>
<td>15</td>
</tr>
<tr>
<td>2.1.2 Maintenance of Giardia intestinalis Cultures</td>
<td>15</td>
</tr>
</tbody>
</table>
2.1.3 Harvesting of *G. intestinalis* Trophozoites 16
2.1.4 Cryopreservation of *G. intestinalis* Trophozoites 17
2.1.5 Screening of Faecal Samples for *G. intestinalis* Cysts 17
2.1.6 Sucrose Flotation Recovery of *Giardia* from Faecal Specimens 18
2.1.7 Immuno-Magnetic Separation (IMS) 19

2.2 DNA Extraction from *Giardia* 20
2.2.1 DNA Extraction from Trophozoites 20
2.2.2 DNA Extraction from *Giardia* Cysts for AFLP and RAPD Analysis 22
2.2.3 DNA Extraction from *Giardia* Cysts for PCR Analysis 23
2.2.4 Trophozoite DNA Concentration Determination by Spectroscopy 24

2.3 PCR Amplification of *Giardia intestinalis* DNA with Giardia Specific (Gsp) and *Giardia intestinalis* (GI) Primers. 25

2.4 Amplified Fragment Length Polymorphism (AFLP) Analysis 26
2.4.1 Digestion and Adaptor Ligation 26
2.4.2 Pre-amplification 28
2.4.3 Selective Amplification 29
2.4.4 Polyacrylamide Gel Electrophoresis 30
2.4.5 Silver Staining and Developing the Polyacrylamide Gel 31
2.4.6 Re-amplification 33
2.4.7 Cloning 34
2.4.8 Sequencing 35

2.5 Random Amplification of Polymorphic DNA (RAPD) Analysis of *G. intestinalis* Isolates 36
2.5.1 Pre-amplification 36
2.5.2 Selective Amplification 37

2.6 Selective Pressure on *in vitro* *G. intestinalis* Trophozoites 38

2.7 Genotyping of Human and Bovine Isolates by rDNA Sequence Analysis 39
2.6.1 Faecal Specimens 39
2.6.2 Amplification of the rDNA loci
2.6.3 PCR Purification
2.6.4 rDNA Sequencing
2.6.5 DNA Sequence Analysis
 2.6.5.1 Alignment of rDNA Sequences
 2.6.5.2 Analysis of rDNA Sequences

CHAPTER 3: RESULTS
3.1 DNA Extraction from *G. intestinalis* Cysts
3.2 AFLP Analysis of *G. intestinalis*
 3.2.1 Differentiation of *in vitro* *G. intestinalis* Cultures by AFLP Analysis
 3.2.2 AFLP Analysis of *G. intestinalis* Cysts from Human and Animal Faeces
 3.2.3 DNA Sequencing
3.3 RAPD Analysis of *G. intestinalis*
 3.3.1 Optimisation of RAPD Analysis of *in vitro* *G. intestinalis* Cultures
 3.3.2 Optimisation of Nested RAPD Analysis of *in vitro* *G. intestinalis* Cultures
 3.3.3 Comparison of Nested and Unmodified RAPD Analysis Techniques
 3.3.4 Nested RAPD Analysis of *G. intestinalis* Cysts from Human and Bovine Faecal Specimens
3.4 Selective Pressure on *in vitro* Cultures
 3.4.1 AFLP Analysis
 3.4.2 RAPD Analysis
3.5 Genotyping of *G. intestinalis* by rDNA Sequence Analysis
 3.5.1 Collection of Faecal Specimens
 3.5.2 *G. intestinalis* rDNA PCR Amplification
 3.5.3 *G. intestinalis* rDNA Automatic Sequencing
CHAPTER 4: DISCUSSION

4.1 AFLP Analysis
 4.1.1 AFLP Analysis of Trophozoite DNA
 4.1.2 G. intestinalis Cyst DNA Extraction
 4.1.3 AFLP Analysis of DNA from G. intestinalis Cysts

4.2 RAPD Analysis
 4.2.1 RAPD Analysis of Trophozoite DNA
 4.2.2 RAPD Analysis of DNA from G. intestinalis Cysts

4.3 Selective Pressure on in vitro Cultures

4.4 rDNA Sequence Analysis

4.5 Summary and Future Directions

REFERENCES

APPENDICES

Appendix A: Reagents

Appendix B: Methodologies
LIST OF FIGURES

Figure 3.1 44
Optimisation of DNA extraction conditions from *G. intestinalis* cysts.

Figure 3.2 45
Confirmation of DNA extraction from *G. intestinalis* using *Giardia* genus specific (Gsp) and *Giardia intestinalis* specific (GI) primers, and visualisation of the PCR products of a 1.6% agarose gel.

Figure 3.3 47
AFLP analysis of *in vitro* cultures Eco-ACG and Eco-ATA primers and examined on a 2% agarose gel.

Figure 3.4 48
AFLP analysis using Eco-AGC and Eco-ATT primers of DNA extracted from *in vitro* cultures of *G. intestinalis* on a 2% agarose gel.

Figure 3.5 49
AFLP analysis using Mse-CAG and Mse-CTG primers of DNA extracted from *in vitro* cultures of *G. intestinalis* visualised on a 2% agarose gel.

Figure 3.6 50
AFLP analysis using Mse-CTA and Mse-CAC primers of DNA extracted from *in vitro* cultures of *G. intestinalis* visualised on a 2% agarose gel.

Figure 3.7 51
AFLP analysis of Mse-CAG and Mse-CTG selective primers of trophozoite DNA examined on a 5% polyacrylamide gel.

Figure 3.8 52
AFLP analysis of Eco-ATT/Eco-CTC and Eco-ATT/Eco-CAC selective primer combinations of trophozoite DNA examined on a 5% polyacrylamide gel.
Figure 3.9
Non-reproducible AFLP fingerprints of *MseI* digested human and bovine *G. intestinalis* cyst DNA, amplified using the Mse-CTC primer in duplicate.

Figure 3.10
Non-reproducible AFLP fingerprints of *MseI* digested human and bovine *G. intestinalis* cyst DNA, amplified using the Mse-CAC primer in duplicate.

Figure 3.11
Stable AFLP fingerprints of Bovine isolate 1 obtained from the pooling of cysts from twelve IMS isolations from a bovine faecal specimen.

Figure 3.12
AFLP analysis from two human and two bovine isolates of *G. intestinalis* using Mse-CG and Mse-CAC primers.

Figure 3.13
AFLP analysis using Mse-CT and Mse-CG primers, performed on two human and two bovine isolates.

Figure 3.14
Reproducibility of AFLP analysis of two isolations of cysts from a bovine faecal specimen using Mse-AT/Mse-CG selective primer combination.

Figure 3.15
An example of a 5% polyacrylamide gel where bands were excised in duplicate from human and bovine AFLP banding patterns for re-amplification.

Figure 3.16
Re-amplification of DNA fragments extracted from polyacrylamide gels from AFLP analysis of the bovine isolates with the Mse-AT/Mse-CG selective primer combination.
Figure 3.17
Vectors containing human and bovine *G. intestinalis* AFLP Fragments examined on a 2% agarose gel.

Figure 3.18
EcoRI digested vectors containing re-amplified AFLP fragments.

Figure 3.19
An electrophoretogram of a vector containing a fragment excised from a polyacrylamide gel.

Figure 3.20
Sensitivity of RAPD analysis, using a range of trophozoite DNA from 1x10^-9 mg - 1 mg, with GC50+GT primer.

Figure 3.21
Sensitivity of nested RAPD analysis, using a range of trophozoite DNA from 1x10^-9 mg - 1 mg, with GC50+GT primer.

Figure 3.22
The RAPD fingerprints using the GC50+GT primer with the modified and unmodified technique were compared with 10 mg of *G. intestinalis* trophozoite DNA.

Figure 3.23
The reproducibility of RAPD analysis technique was examined using DNA extracted from cysts of a bovine isolate of *G. intestinalis*.

Figure 3.24
RAPD analysis of two human and two bovine isolates of DNA from cysts of *G. intestinalis* was performed in duplicate using the GC50+GT/GC60+GT selective primer combination.

Figure 3.25
RAPD analysis of two human and two bovine isolates of DNA Extracted from cysts of *G. intestinalis* performed in duplicate using the GC50+GT/GC70+GT selective primer combination.
Figure 3.26
AFLP analysis of *G. intestinalis* grown under selective pressure and wild-type trophozoites using Mse-GA and Mse-CAA primers.

Figure 3.27
RAPD analysis of wild-type trophozoites of *G. intestinalis* and those grown under selective pressure.

Figure 3.28
Structure of the *Giardia* rDNA gene showing the location of MAT1, MAT2, Cyn0 and Cyn2 primers.

Figure 3.29
PCR amplification of *G. intestinalis* rDNA gene using nested primers on bovine *G. intestinalis* cyst DNA.

Figure 3.30
A typical electrophoretogram of the rDNA sequence of *G. intestinalis* using the Cyn0 primer.

Figure 3.31
Alignment of the Cyn0 sequences of *G. intestinalis* rDNA PCR Products from human and bovine isolates.

Figure 3.32
Splitstree diagram showing the phylogenetic relationships of human and bovine *G. intestinalis* isolates using a 13bp region covering the single nucleotide substitution at position 61, separating the isolates into two distinct groups with a 99.7% fit.

Figure 3.33
Splitstree diagram showing the phylogenetic relationships of human and bovine *G. intestinalis* isolates using the 389 nucleotides of the rDNA sequence, showing more diversity amongst the human genotype.

Figure 3.34
Description of the 1Kb Plus DNA Ladder™.
Figure 3.35
Description of the Low DNA Mass™ Ladder

Figure 3.36
Map of the pGEM®-T Easy Vector

Figure 3.37
Flow diagram of the AFLP methodology
LIST OF TABLES

Table 1
Faecal specimens collected over the sampling period

Table 2
Table of the 53 Isolates used for rDNA sequence analysis