Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Host-race specificity in the endemic pygmy mistletoe *Korthalsella salicornioides* (Viscaceae)

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

In

Plant Biology

at Massey University, Palmerston North,

New Zealand

Sofie Margaret Pearson

2016
ABSTRACT

Korthalsella Tiegh. is a genus of stem hemiparasites in the family Viscaceae, represented in New Zealand by three endemic species: *K. clavata*, *K. lindsayi*, and *K. salicornioides*. The most host-specific is *K. salicornioides* as it parasitizes two main host genera *Leptospermum* (Myrtaceae) and *Kunzea* (Myrtaceae), while the other two species are considered generalists parasitizing a wider range of host species. *K. salicornioides* is naturally uncommon and sparse, although it can be locally abundant on occasion. Mistletoe populations are at risk primarily due to habitat destruction and subsequent loss of hosts. Cross-infection experiments in *K. salicornioides* provided some insight into the presence of putative host races, as better mistletoe seedling establishment success rates were apparent when the maternal and recipient hosts were the same. However, because previous molecular sequence data (nuclear internal transcribed spacers and chloroplast *trnQ-rps16*) for *K. salicornioides* were not informative about specific host-races, more rapidly evolving molecular markers might be expected to detect host races.

In this study, next generation sequencing was used to develop novel microsatellite markers for *Korthalsella*. Eleven markers were reliably amplifiable and the most polymorphic for *K. salicornioides* were used to genotype 272 *K. salicornioides* individuals from 16 populations. Across all populations few alleles were identified, and within-population assessment of genetic variation indicated that many populations have low levels of genetic diversity and high proportions of homozygotes. Despite the presence of few alleles, a high degree of genetic differentiation between most populations was detected and was found to reflect host species and geography.

The findings of this study that *Korthalsella salicornioides* populations have low levels of genetic variation but host-specific races, has important conservation implications. The main conservational focus should be maintaining and increasing host *Leptospermum* and *Kunzea*
populations. The spread of mistletoe seed on hosts within or between populations may also increase the chances of continued survival. However, it is imperative that genetic material comes from the same host species, and consideration should also be given to the geographic area, especially in the Wairarapa. This study provides insights into the population structure within and between the different host populations and suggests several interesting areas of future study.
ACKNOWLEDGEMENTS

First and foremost I would like to give a humongous thanks to my supervisors, Jennifer Tate and Vaughan Symonds, for your guidance and advice along the way. Thank you for giving me the opportunity to undertake this study. The time put into helping me collect samples, answer my questions, give feedback, and notice my numerous spelling mistakes is hugely appreciated.

I would also like to express my gratitude for the help of Alastair Robertson, Amir Sultan, Nick Singers and Peter de Lange for information about Korthalsella and identifying populations to collect. Also to Paul Cashmore (DOC) and Conny Flanigan (Kawerau District Council) for taking time out of your day to show and help me collect from the mistletoe populations.

Thanks to all the LoST lab members, both past and present, who helped me with my study and the advice you gave me. I would like to express my gratitude to Megan van Etten for all her work and help getting me started, and to Prashant Joshi for all the help provided over the years.

I would also like to thank the Auckland Botanical Society for the Lucy Cranwell Grant, the Heseltine Trust for the Heseltine Trust Bursary and Massey University for the J. P. Skipworth Scholarship for aid in this research.

I am also grateful to my close friends and family for all their help, enthusiasm and encouragement throughout my studies. I couldn’t have achieved this without everyone’s support.
ABBREVIATIONS

\%P - percentage of polymorphic loci
A - number of alleles
As - allele size
AT - total number of alleles
AFLP - Amplified Fragment Length Polymorphism
AMOVA - analysis of molecular variance
BLAST - basic local alignment search tool
bp - base pairs
cpDNA - chloroplast DNA
CASS - cheaply amplified size standard
CTAB - hexa-decetylammomium bromide
DNA - deoxyribonucleic acid
dNTP - deoxyribonucleotide triphosphate
DOC - Department of Conservation (New Zealand)
ER - Ecological Region
FIS - component of Wright’s (1921) fixation index, used to define within population structure by calculating the average observed heterozygosity of an individual relative to the expected heterozygosity of individuals in the population it belongs to
FST - component of Wright’s (1921) fixation index, used to define between population structure by comparing the expected heterozygosity of individuals within a subpopulation to the total expected heterozygosity of individuals across all populations
HE - expected heterozygosity
HO - observed heterozygosity
IBD - Isolation by Distance
ITS - internal transcribed spacer
LnP(D) - mean posterior probability
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Million years</td>
</tr>
<tr>
<td>MPN</td>
<td>Dame Ella Campbell Herbarium</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial DNA</td>
</tr>
<tr>
<td>N</td>
<td>Number of individuals</td>
</tr>
<tr>
<td>N_A</td>
<td>Number of alleles</td>
</tr>
<tr>
<td>N_e</td>
<td>Effective number of alleles</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RAPD</td>
<td>Randomly Amplified Polymorphic DNA</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable Number of Tandem Repeat loci</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Abstract ... iii
Acknowledgements .. v
Abbreviations .. vi
List of Figures... xi
List of Tables.. xii

1. Introduction .. 1
 1.1 Parasitic Flowering Plants ... 1
 1.2 Mistletoes .. 5
 1.3 *Korthalsella* in New Zealand .. 6
 1.3.1 Conservation of *Korthalsella* and its hosts ... 10
 1.3.2 Dispersal mechanisms and life history traits ... 12
 1.3.3 Evidence for host-race ... 13
 1.4 Markers to Assess Genetic Variation ... 17
 1.5 Analysis Methods for Population Structure ... 19
 1.6 Focus of this Research ... 21
 1.7 References .. 22

2. Microsatellite Markers for *Korthalsella* (Viscaceae) in New Zealand .. 29
 2.1 Abstract .. 29
 2.2 Introduction .. 30
 2.3 Methods and Results ... 30
 2.4 Conclusions ... 34
 2.5 References .. 39
3. Population genetics and host-race specificity in *Korthalsella salicornioides* (Viscaceae) ... 41

3.1 Abstract ... 41

3.2 Introduction ... 42

3.3 Materials and Methods ... 46

3.3.1 Sample collection ... 46

3.3.2 DNA extraction and genotyping ... 50

3.3.3 Assessing genetic variation .. 51

3.3.4 Resolving genetic structure and differentiation ... 52

3.4 Results ... 53

3.4.1 Genetic Variation .. 53

3.4.2 Genetic Structure ... 55

3.4.3 NeighborNet .. 62

3.5 Discussion ... 64

3.5.1 Genetic variation within *Korthalsella salicornioides* populations 64

Private alleles .. 64

Seed dispersal and vector limitation of Korthalsella salicornioides 66

Lower North Island genetic “hot spot” ... 68

3.5.2 Host-races in *Korthalsella* .. 70

Mechanisms of parasite differentiation ... 71

3.5.3 Conservation implications for *Korthalsella salicornioides* and its hosts 72

Conservation of Korthalsella salicornioides ... 73

Host trees as economic benefits ... 75

3.5.4 Future directions .. 77

3.6 Conclusion ... 79

3.7 References ... 81
4. Conclusion ... 89

4.1 Introduction .. 89

4.2 Findings .. 91

4.3 Limitations ... 93

4.4 Future Directions .. 94

4.5 References ... 97

Appendix 1: Population genetic diversity estimates for 16 populations of Korthalsella salicornioides based on the seven polymorphic loci .. 98
LIST OF FIGURES

1. Introduction

Figure 1.1 Korthalsella salicornioides parasitic on Leptospermum scoparium and Kunzea tenuicaulis .. 8

Figure 1.2 Primary, secondary and tertiary host of Korthalsella salicornioides, K. clavata and K. lindsayi .. 9

Figure 1.3 ITS sequence type diversity in Korthalsella salicornioides ... 16

3. Population genetics and host-race specificity in Korthalsella salicornioides

Figure 3.1 Distribution map of the populations of Korthalsella salicornioides sampled for this study .. 48

Figure 3.2 Plot of ΔK vs K for STRUCTURE results based on 15 replicates for each K value .. 58

Figure 3.3 Plot of mean posterior probability values per cluster, based on 15 iterations per K from STRUCTURE analyses ... 58

Figure 3.4 STRUCTURE cluster assignment of Korthalsella salicornioides individuals 59

Figure 3.5 Mantel test results displayed in graph of pairwise $F_{ST}(1-F_{ST})$ against the natural log of geographic distance (km) for Korthalsella salicornioides .. 61

Figure 3.6 Mantel test results displayed in graph of pairwise $F_{ST}(1-F_{ST})$ against the natural log of geographic distance (km) for Korthalsella salicornioides mānuka-host populations (A), and kanuka-host populations (B) ... 61

Figure 3.7 NeighborNet generated in SPLITSTREE4 based on pairwise genetic distances between all Korthalsella salicornioides populations ... 63

Figure 3.8 Kunzea amathicola at Hokio Beach .. 68

4. Conclusion

Figure 4.1 Leaf shapes of herbarium specimens of Leptospermum scoparium parasitized by Korthalsella salicornioides .. 95

Figure 4.2 Two Leptospermum scoparium host populations at Kohi Point coastal habitat along walking track (A), and Kerikeri swamp habitat (B) .. 96
LIST OF TABLES

1. Introduction

Table 1.1 The 12 orders of parasitic angiosperms with example families and genera 3

2. Microsatellite Markers for Korthalsella (Viscaceae) Species in New Zealand

Table 2.1 Locations and herbarium voucher information for Korthalsella populations used in this study ... 35

Table 2.2 Primer sequences and characteristics of 16 microsatellite loci developed from Korthalsella salicornioides ... 36-37

Table 2.3 Genetic properties of the newly developed 11 microsatellite loci across five North Island populations of Korthalsella .. 38

3. Population genetics and host-race specificity in Korthalsella salicornioides

Table 3.1 Relative Korthalsella salicornioides population size information based on the estimated number of host trees parasitized for locations used in this study 47

Table 3.2 Locations, host tree and herbarium voucher information for Korthalsella salicornioides populations used in this study ... 49

Table 3.3 Characteristics of eleven microsatellite loci for 272 samples of Korthalsella salicornioides ... 54

Table 3.4 Population information and genetic diversity estimates for 16 populations of Korthalsella salicornioides .. 55

Table 3.5 Clustering of K=7 STRUCTURE results examining genetic structure within the Kunzea and Leptospermum genera .. 60

Table 3.6 AMOVA results for the partitioning of microsatellite variation in: A) all Korthalsella salicornioides populations, B) comparing between four regions identified in STRUCTURE .. 62