Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Modelling Infectious Disease Epidemiology and Vaccination Impact

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy
in
Mathematics
at Massey University, Albany,
New Zealand.

by

Joanne L. Mann
2009
Abstract

This thesis presents mathematical models for the dynamics of vaccine preventable diseases, specifically looking at the New Zealand situation. Through the use of integral and differential equations, we develop models and compare the results of these to known data.

Using game theory analysis we determine and compare the proportion of the population that needs to be vaccinated in order to minimise the expected costs to the individuals in the population and to the community. Two different scenarios and methods are considered, where the effects of vaccination last only one epidemic cycle (using an integral equation method) and where vaccination is effective over an entire lifetime (using a differential equation method). For both scenarios, we find that the minimum cost for the individuals is reached when a lower proportion of the population is vaccinated than needed for the minimum cost to the community.

We then elaborate on the integral equation method to produce a model for repeated epidemics of measles in a population, where a discrete mapping is used to include the year to year demographics of the population. The results of this model show a different epidemic pattern then that produced from a differential equation model, with numerical problems encountered. From here on, we use differential equation models in our analysis.

A critique and extension to an existing model for the dynamics of the hepatitis B virus is presented, with discussion on the appropriateness of the model’s construct for predicting the incidence of infection. Alternative differential equation models for hepatitis B virus and immunisation that include splitting the population into age groups with non-homogeneous mixing are presented. The results of these models are compared with the known data on incidence of infection and carriage in New Zealand, showing how affective different immunisation schedules may have been.

Differential equation models are then presented for meningococcal B virus epidemiology in New Zealand, with the models incorporating different features of the virus until the best model is found that fits the New Zealand data. Each model is compared with the known incidence of infection, with the population being either treated as a whole or split into age groups with non-homogeneous mixing. The effect of vaccination is included in this model so that we can explore the future of the infection in the population, and how best to tackle any future epidemics. The model shows that the current vaccination campaign was the best solution for controlling the epidemic, but there will be epidemics in the future that will need subsequent vaccination campaigns to limit the number of infections.
Acknowledgements

This work was carried out at the Institute of Information and Mathematical Sciences at Massey University in Albany. My PhD programme was funded by a Massey University Doctoral Scholarship, and supported by the Institute of Information and Mathematical Sciences, for which I am extremely grateful.

I express my gratitude to my two supervisors, Professors Mick Roberts and Graeme Wake, for their help and guidance over the course of my studies. To Mick, I thank you for our weekly meetings and you continual encouragement and belief in me. Your patience and understanding over the years is very much appreciated, and my work would have been a much harder and longer road without your help.

To all the staff and other post graduate students in IIMS, your companionship and encouragement over the years has made my stay at Massey very enjoyable. Many thanks to both Mick Roberts and Nancy Simpson for proof reading this thesis.

Lastly, my thanks to my family for seeing me through to the end of my studies, to Mum and Kenny for their love and support each day.

Dedicated to Ian Mann, 1942–2005.
Contents

1 Introduction ... 1
 1.1 Background Information 2
 1.2 Outline of the thesis 2

2 Vaccination Strategies 7
 2.1 Introduction ... 7
 2.2 Yearly Epidemics 8
 2.2.1 Background 9
 2.2.2 Individual and Community Expected Costs 13
 2.2.3 What Proportion of the Population should be Vaccinated? 14
 2.3 Life-Long Vaccination 19
 2.3.1 SIR Model 19
 2.3.2 Individual and Community Expected Costs 20
 2.3.3 What Proportion will Minimise the Costs? 21
 2.4 Discussion .. 23
 2.5 Conclusion .. 25

3 Discrete Mapping for Repeated Measles Epidemics 27
 3.1 Introduction ... 27
 3.2 An integral equation model 28
 3.3 Model results ... 32
 3.4 Discussion .. 37

4 Review and Extensions to the Medley et al. (2001) Hepatitis B Virus Model ... 39
 4.1 Introduction ... 39
 4.2 Literature Review 40
 4.3 Critical Review of Medley et al. (2001) 44
 4.4 Extending the Medley et al. model to multiple age classes 55
 4.4.1 SEICR Model with two population classes 55
 4.5 Discussion .. 63
CONTENTS

5 Modelling the Epidemiology of Hepatitis B in New Zealand 65
 5.1 Introduction ... 65
 5.2 Five Age Groups with Vaccination 65
 5.3 Five age group model with age dependent parameters 83
 5.3.1 Other Vaccination Schemes 91
 5.4 Parameter Estimation 93
 5.5 Conclusions ... 94

6 A Mathematical Model of Meningococcal Disease in New Zealand 97
 6.1 Introduction ... 97
 6.2 Literature Review 99
 6.3 SCIR Model ... 102
 6.4 Structured SCIR Model 110
 6.4.1 Five Age class model with age dependent parameters 124

7 Alternative Models for Meningococcal Disease in New Zealand 127
 7.1 Reinfection models, with no removed class. 127
 7.2 Five age class model with reinfection 132
 7.3 Model with reinfection and immunity for acutely infected individuals. 135
 7.4 Temporary Immunity Model 137
 7.4.1 Temporary Immunity Model with population demographics .. 139
 7.4.2 Temporary immunity model with demographics and vaccination. 148
 7.4.3 Exploring different vaccination schemes 159
 7.5 Discussion ... 161

8 Conclusions and Future Work 165

Appendix: Elaborations to the community versus individual cost chapter 169
 A.1 Derivation of the Final Size Equation from an SIR model 169
 A.2 Yearly Epidemics, when C_V Greater than or Equal to C_I 170
 A.3 Life-Long Vaccination, with C_V Greater than or Equal to C_I. ... 171

Bibliography ... 174
List of Figures

2.1 Solutions to the final size equation for two values of R_v. 11
2.2 Solution to $z = e^{R_v(z-1)}$ for varying values of R_v 12
2.3 Solution to $\log\left(\frac{s(\infty)}{1-v}\right) = \left(\frac{s(\infty)}{1-v} - 1\right) R_v$ when $R_0 = 5$ 12
2.4 Expected costs for the individual strategies and the community for the yearly epidemics, when $C_I > C_V$... 16
2.5 Expected costs for the individual strategies and the community for the yearly epidemics, when $C_V = 0$... 17
2.6 The distance between the individual’s “break even” and community’s minimum ... 17
2.7 The expected costs for the individual and community strategies for life long vaccination, when $C_I > C_V$... 22
2.8 The expected costs for the individual and community strategies for life long vaccination, when $C_V = 0$... 22
2.9 The difference between the individual’s “break event” point and the community’s minimum point ... 23
3.1 Cumulative and age-group susceptibles at the end of each year with $R_0 = 12.8$ for integral equation measles model ... 33
3.2 Relative reproduction ratio during repeated measles epidemics 34
3.3 Post epidemic susceptible population and the inter-epidemic period for varying values of R_0 ... 35
3.4 Susceptible population at the end of repeated epidemics when $R_0 = 12.4$ and $R_0 = 18.6$... 36
4.1 Bifurcation diagram for the Medley et al. (2001) model 47
4.2 Parameter space that produces the backwards bifurcation 48
4.3 Figures to show the relationship between parameters and the backwards bifurcation point ... 50
4.4 Backwards bifurcation point in terms $\frac{dI}{d\lambda} = 0$... 54
4.5 Two age group Hepatitis B infection process chart ... 56
4.6 Movement between infectious classes in terms of proportion and time spent in each compartment for the two age class Hepatitis B model ... 57
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>Largest eigenvalues versus R_0 at the trivial steady state</td>
</tr>
<tr>
<td>4.8</td>
<td>Bifurcation diagram for the two population Hepatitis B model</td>
</tr>
<tr>
<td>4.9</td>
<td>Number of acute and carrier infections in the population over the course of the epidemic</td>
</tr>
<tr>
<td>4.10</td>
<td>The yearly incidence of infection for the two age cohort model</td>
</tr>
<tr>
<td>5.1</td>
<td>The cumulative number of carriers and infectives during the course of the epidemic in the five age class model</td>
</tr>
<tr>
<td>5.2</td>
<td>Movement between the infectious classes in terms of proportion and time spent in each class for the five age class model</td>
</tr>
<tr>
<td>5.3</td>
<td>Bifurcation diagram for the five age class Hepatitis B model</td>
</tr>
<tr>
<td>5.4</td>
<td>The yearly incidence of infection for the five age cohort model</td>
</tr>
<tr>
<td>5.5</td>
<td>The yearly incidence of infection for the two age cohort model with vaccination</td>
</tr>
<tr>
<td>5.6</td>
<td>Cumulative age groups yearly incidence of infection</td>
</tr>
<tr>
<td>5.7</td>
<td>Cumulative yearly incidence of carriage and total number of carriers in the population over the course of the epidemic</td>
</tr>
<tr>
<td>5.8</td>
<td>Cumulative yearly age class incidence of infection, with age dependent rates of acute incidence</td>
</tr>
<tr>
<td>5.9</td>
<td>Total yearly incidence of infection and carriage</td>
</tr>
<tr>
<td>5.10</td>
<td>Total yearly incidence of infection and carriage with no vaccination</td>
</tr>
<tr>
<td>5.11</td>
<td>Relative reproduction ratio over the course of the Hepatitis B epidemic</td>
</tr>
<tr>
<td>5.12</td>
<td>Number of carriers in the population at any time during the epidemic</td>
</tr>
<tr>
<td>5.13</td>
<td>Age group yearly incidence numbers when only babies vaccinated</td>
</tr>
<tr>
<td>5.14</td>
<td>Cumulative age group yearly incidence of infection with a vaccination campaign starting in 1980</td>
</tr>
<tr>
<td>6.1</td>
<td>The recorded number of meningococcal cases of infection</td>
</tr>
<tr>
<td>6.2</td>
<td>The recorded number of meningococcal B cases of infection</td>
</tr>
<tr>
<td>6.3</td>
<td>The infection process for meningococcal</td>
</tr>
<tr>
<td>6.4</td>
<td>Proportion of the population susceptible, infectious, carrier and removed for the simple meningococcal model</td>
</tr>
<tr>
<td>6.5</td>
<td>Proportion of the population susceptible, infectious, carrier and removed for the simple meningococcal model showing the effect of varying parameters</td>
</tr>
<tr>
<td>6.6</td>
<td>The largest eigenvalues of the Jacobian matrix plotted against R_0</td>
</tr>
<tr>
<td>6.7</td>
<td>Bifurcation diagram for the simple SCIR proportion model</td>
</tr>
<tr>
<td>6.8</td>
<td>Illustration of the infection process with the population split into five age classes</td>
</tr>
<tr>
<td>6.9</td>
<td>The largest eigenvalues of the Jacobian matrix plotted against R_0 at the trivial steady state</td>
</tr>
<tr>
<td>6.10</td>
<td>Yearly incidence of infection in the five age classes</td>
</tr>
</tbody>
</table>
6.11 Yearly incidence of infection for the five age class model with age dependent parameters .. 126
7.1 The infection process for meningococcal disease with reinfecion 128
7.2 Largest eigenvalues of the Jacobian matrix versus R_0 at the trivial steady state ... 131
7.3 Yearly incidence of infection for the SCI model with reinfection 131
7.4 Largest eigenvalues of the Jacobian matrix versus R_0 for the five age class model with reinfection .. 133
7.5 The yearly incidence of infection for the five age class SCI reinfection model .. 134
7.6 The infection process for meningococcal with reinfection and multiple carriage 135
7.7 The yearly incidence of infection for the model with reinfection and carriage multiple times ... 136
7.8 Yearly incidence of infection for the initial temporary immunity model .. 138
7.9 Yearly incidence of infection in each age class for the eight class model .. 144
7.10 Total yearly incidence of infection for the eight class model, 1980–2120 . 145
7.11 Total yearly incidence of infection for the eight class model, 1980–2010 . 145
7.12 Effective reproduction ratio for the eight age class meningococcal disease model ... 146
7.13 Age class yearly incidence numbers with vaccination 152
7.14 Total yearly incidence of infection with vaccination included, short time frame 153
7.15 Total yearly incidence of infection with vaccination included, long time frame 153
7.16 Total monthly incidence of infection, showing the seasonality of the infection 154
7.17 Reproductive ratio with and without vaccination 154
7.18 Reproductive ratio and yearly incidence of infection with and without the effect of vaccination ... 155
7.19 Total yearly incidence of carriage ... 156
7.20 Yearly incidence of infection in each age class 157
7.21 Total number of carriers in the population at any time during the epidemic 158
7.22 Yearly incidence of infection for meningococcal with vaccination from 2004–2006 and 2035–2037 ... 161
A.1 The expected costs for the two individual strategies and community strategy when $C_V > C_I$ and $C_V = C_I$ for yearly epidemics 172
A.2 The expected costs for the two individual strategies and community strategy when $C_V > C_I$ and $C_V = C_I$ for life-long vaccination 173