Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Genetics of *Pseudomonas fluorescens* SBW25: Adaptation to a Spatially Structured Environment.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
In
Genetics

at Massey University, Auckland Campus.

Michael Joseph McDonald

2009
Experimental microbial populations provide powerful models for testing the most challenging problems in evolutionary biology. In the midst of the genome sequencing revolution microbial evolutionary genetics has flourished; promising high-resolution explanations for the underlying causes of evolutionary phenomena. This thesis describes four investigations into the adaptation of *Pseudomonas fluorescens* SBW25 to a spatially structured environment. The first builds upon a large body of experimental work characterising the genetic and phenotypic causes of the ability of divergent Wrinkley Spreader (WS) types to colonise the air-liquid interface in spatially structured microcosms. The *mws* and *aws* genetic loci are described, which together with the previously described *wsp* locus, account for the location of the causal mutation for all known WS genotypes. It was found that if these loci were deleted from the *P. fluorescens* genome, it could still evolve the WS phenotype via a previously undiscovered locus (*sws*). This study provides the first explicit evidence that genetic biases can influence the outcome of evolution. The second study used a novel method to sample WS genotypes without the biasing effects of natural selection; the distribution of the fitness effects of these genotypes was measured and analysed from a unique perspective. The distribution of fitness effects of new mutations is found to best fit the normal distribution, facilitating the extension of the mutational landscape model of adaptation to include all possible adaptive walks. The third study investigates the underlying causes of genetic biases on evolution; many WS genotypes are obtained at different time points during colonisation of the air-liquid interface (including WS obtained without selection) and the causal mutations of many of these mutants determined. Together these results allowed the elucidation of the relative effects of natural selection, genetic architecture and mutation rate on evolutionary outcomes. The final study considers the WS mat as the product of cooperative interactions, and uses a group selection experiment to investigate the potential of WS mats to evolve group level adaptations. A novel strategy is developed to overcome cheating types, considered the main barrier to the evolution of group level complexity. Furthermore, WS groups evolved specialised cell types, the first example of a *de novo* evolution of a division of labour, a hallmark of complexity.
Like all things worth having a Ph.D takes a lot of time and work, however, I can say I have enjoyed nearly every minute of it. First I would like to thank Paul for taking me on as a student. On paper I was far from a sure bet and I am not sure how I got past his method for screening potential students. However that happened I am always grateful that I have been able to benefit from his mentorship and gain the new perspective of the world that comes with the study of Evolution.

Secondly, my co-supervisor Xue Xian deserves thanks for his always-sound advice and also for passing on his excellent lab techniques; I soon learnt the way to make it work was do exactly as he did.

The Rainey lab seems to attract excellent post docs. Among the many things taught to me I will remember these lessons: Bertus, for thinking deeply and outside the square; Tim, for perceptive analysis and introducing me to the big problems in evolutionary biology; Dominik, for expounding the history of evolutionary theory and Christian, for demonstrating the benefits of careful experiment design.

Fellow Ph.D students Jenna and Pete, who apart from providing a good source of commiseration, cooperation and information also set high standards for me to keep up with. Also Annabel, Ellen and Andy for technical and other help.

Thanks to my Parents, Bryan and Carol; without their support doing a PhD, getting married and having kids over the same period of time would have been impossible. Also Dad for teaching me how to examine a problem logically, a tool I use everyday.

Finally to my wife Wen-Pei, whose calming influence allowed me to focus my attention on a worth-while endeavour for the first time in my life. Also, by giving me two children before the age of 28, I became the fittest person (evolutionarily speaking) in the lab.
TABLE OF CONTENTS

0.1 ABSTRACT II
0.2 ACKNOWLEDGEMENTS III
0.3 TABLE OF CONTENTS IV
0.4 FIGURES viii
0.5 TABLES Viili
0.6 ABBREVIATIONS ix

1 INTRODUCTION 1
 1.1 Darwin’s Insight 2
 1.1.1 The modern synthesis 2
 1.2 Experimental evolution 5
 1.3 Microbial models of evolution 6
 1.3.1 The E. coli long term evolution experiment 6
 1.4 P. fluorescens SBW25, a model system 8
 1.4.1 Cooperation and conflict in WS mats 9
 1.4.2 Causes of the WS phenotype 11
 1.4.2.1 The wsp locus 13
 1.4.2.2 DGC proteins and c-di-GMP 14
 1.4.3 The genetic causes of WS 15
 1.4.3.1 The wspF locus 15
 1.4.3.2 The aws operon 16
 1.5 The genetical theory of evolution 17
 1.5.1 The distribution of fitness effects of new mutations 20
 1.5.2 The mutational landscape of adaptation 22
 1.5.2.1 The mutational landscape and fitness landscapes 24
 1.5.2.2 Extensions and tests of the mutational landscape 25
 1.5.3 Genetic architecture and the genotype-phenotype map 26
 1.5.4 Genetic architecture and constraints on evolution 29
 1.6 Summary 30
 1.7 Research objectives 31
 1.8 Bibliography 32

2 GENETIC CONSTRAINTS GUIDE EVOLUTIONARY TRAJECTORIES IN A PARALLEL
ADAPTIVE RADIATION

 2.1 ABSTRACT 38
 2.2 INTRODUCTION 39
 2.3 MATERIALS AND METHODS 42
 2.3.1 Bacterial strains, growth conditions and manipulation 42
 2.3.2 Molecular biology techniques 43
 2.3.3 Construction of deletion mutants and allelic replacements 43
 2.3.4 Transposon mutagenesis analysis 44
 2.3.5 Fitness of genotypes 45
2.4 Results
2.4.1 Comprehensive suppressor analysis of LSWS 46
2.4.2 Aws: a wsp independent route to WS 47
 2.4.2.1 Mutations in awsX are necessary and sufficient for AWS 49
 2.4.2.2 AwsX is a negative regulator 52
2.4.3 Mws: a wsp and aws independent route to WS 53
 2.4.3.1 Predicting the mutational cause of the MWS 54
 2.4.3.2 Mutations in mwsR are necessary and sufficient for MWS 55
 2.4.3.3 The EAL domain negatively regulates MwsR activity 55
2.4.4 Fitness of AWS and MWS 56
2.4.5 The relative contribution of wsp, aws and mws to WS variation 59
2.4.6 SWS: a wsp, aws and mws independent route to WS 60
2.4.7 The mutational origins of the independent WS genotypes 61

2.5 Discussion
2.5.1 Parallel genetic evolution due to genetic constraints 65
2.5.2 Mutational target size 67
2.5.3 Conclusion 70

2.6 Bibliography 72

3 THE DISTRIBUTION OF FITNESS EFFECTS OF NEW MUTATIONS
3.1 Introduction 77
3.2 Results 80
 3.2.1 Gathering an unbiased sample of WS mutations 80
 3.2.1.1 Argument that WS will not experience selection 81
 3.2.1.2 Experiments to exclude bias in the collection of WS 82
 3.2.2 Fitness of the 100 WS 85
 3.2.3 Determining the uniqueness of clones within the 100 WS 89
3.3 Discussion 91
 3.3.1 The normal distribution and modular systems 91
 3.3.2 The normal distribution and the fitness landscape 93
 3.3.3 Empirical support for the generality of the normal \(f(x) \) 95
 3.3.4 Concluding comments 96
3.4 Bibliography 97

4 THE CAUSES AND CONSEQUENCES OF THE BIASED PRODUCTION OF VARIATION
4.1 Introduction 100
4.2 Results 104
 4.2.1 Experimental dissection of an adaptive radiation 104
 4.2.2 wspF can produce the widest range of WS genotypes 108
 4.2.3 The AWS and WS_\(T \) alleles are produced at a higher rate 111
 4.2.3.1 Comparing the observed to expected rate of mutation 114
 4.2.4 Elevated mutation rates in mwsR 115
 4.2.4.1 Comparison of observed to expected mwsR mutations 119
4.3 Discussion 120
 4.3.1 The causes of the genetically biased production of variation 120
 4.3.2 Mutation influences evolutionary trajectories randomly 122
5 THE EVOLUTION OF COMPLEXITY IN WS MATS

5.1 Introduction 133
5.1.1 A model for the evolution of a germ-soma separation 135
5.1.2 Group selection 136
5.1.3 The evolution of bacterial multicellularity 137
5.2 Results 138
5.2.1 Group selection for stronger WS mats 138
5.2.2 Diminishing mat strength correlates with more cheats 140
5.2.3 Conflict mediation facilitates evolution of the group 143
5.2.4 Differentiated cell types within WS mats 145
5.2.5 The WS₁ and WS₂ have specialised functions 147
5.3 Discussion 148
5.3.1 The failure of group selection due to cheats 149
5.3.2 Artificial conflict mediation rescued the evolution of the group 151
5.3.3 The evolution of a division of labour 152
5.3.4 Prokaryotic and eukaryotic potential to evolve multicellularity 153
5.3.5 Concluding comments 155
5.4 Bibliography 156

6 CONCLUDING DISCUSSION

6.1 Introduction 159
6.2 DGC protein networks as a model of evolvability 160
6.3 The relative role of genetic structure on evolution: mutational distance 161
6.4 The predictability of evolution 163
6.5 Final comments 165
6.6 Bibliography 166
7 MATERIAL AND METHODS

7.1 Materials
7.1.1 Media and growth conditions 169
7.1.2 Bacterial strains 169
7.1.3 Plasmids and transposons 170
7.1.4 Primers 170
7.1.5 Antibiotics and markers 171

7.2 Methods
7.2.1 DNA preparation 173
7.2.2 Polymerase Chain Reaction (PCR) 173
7.2.3 Electrophoresis 174
7.2.4 DNA extraction 174
7.2.5 DNA sequencing 174
7.2.6 Allelic replacement 175
7.2.7 Transformation 175
7.2.8 Restriction enzyme cleavage 175
7.2.9 Bi-parental conjugation 176
7.2.10 Tri-parental conjugation 176
7.2.11 Transposon mutagenesis 177
7.2.12 Fitness assays 177
7.2.13 Artemis 178
7.2.14 Group selection experiment 178
7.2.15 Reciprocal invasion assays 179
7.2.16 Assay for mat persistence at the broth surface 179

8 APPENDICES

8.2 Chapter two
8.2.1 Optimisation of transposon mutagenesis 181

8.3 Chapter three
8.3.1 Theoretical and sample quantiles for fitted curves 182
8.3.2 Maximum likelihood table for static and shaken measurements 183

8.4 Chapter four
8.4.1 The birthday problem program 184
8.4.2 Mutations discovered in chapter four 184
FIGURES

1.1 Colony morphology and niche specificity in WS microcosms 10
1.2 The wss operon. 12
1.3 Model of the wsp chemosensory pathway 14
1.4 Fisher’s model of adaptation 18
1.5 Fisher's fitness effects of new mutations 20
1.6 The distribution of fitness effects 23
1.7 The genotype to phenotype map 27

2.1 Relative fitness of WS genotypes 58

3.1 Regression of colony diameter and WS fitness. 84
3.2 Distribution of WS fitness effects measured in static microcosms 85
3.3 Regression of shaking against static fitness for 26 independent WS 88
3.4 Distribution of WS fitness effects in the shaken microcosm 89

4.1 The experimental dissection of the WS adaptive radiation 105
4.2 Fitness measurements for all unique WS mutations. 107
4.3 Two possible explanations for the distributions of fitness effects 109
4.4 Mutations in $awsX$ 112
4.5 Day zero $mwsR$ mutations 118
4.6 Strand slippage mechanism 125
4.7 Theoretical steps towards the evolution of a contingency locus 128

5.1 Fitness trajectories of group selected lines 139
5.2 Relationship of mat strength and the proportion of cheating types 141
5.3 Proportion of cheats in the group selected lines 142
5.4 Conflict mediation in the group selected lines 145
5.5 Mat strength WS₁, WS₂ and combined mats 146
5.6 Visual comparison of WS₁, WS₂ and combined mats 148

8.1 Theoretical and sample quantiles for goodness of fit: static 198
8.2 Theoretical and sample quantiles for goodness of fit: shaken 199

TABLES

2.1 The mutational causes of WS 51
3.1 The mutations found by sequencing 20 of the 100 WS genotypes 96
4.1 The proportion of $awsX/wspF$ mutations found at each time point 106
5.1 Initial and final mean mat strengths with and without conflict mediation 144
7.1.2 Bacterial strains 169
7.1.3 Plasmids and transposons 170
7.1.4 Primers 170
8.1 Maximum likelihood table for static and shaken fitness measurements 183
8.2 Mutations discovered in chapter four 185

ABBREVIATIONS

WS – Wrinkly spreader
SM- Smooth
DGC- Di-Guanylate Cyclase
PDE- Phosphodiesterase
LSWS- Large Spreading Wrinkly Spreader
AWS- Alternative Wrinkly Spreader
MWS- Mike’s Wrinkly Spreader
SWS- Slow Wrinkly Spreader
DFE- Distribution of Fitness Effects
EVT- Extreme Value Theory
CLT- Central Limit Theorem
MSC- Mutation Selection Cassette