Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE LATE HOLOCENE
VEGETATIONAL AND
CLIMATE HISTORY OF
WESTERN HAWKES BAY,
NEW ZEALAND

A thesis submitted in partial
fulfilment of the requirements for the degree of

Master of Science
in Quaternary Science

at
Massey University, New Zealand

by
Colleen Thérèse Hannan
1998
ABSTRACT

Sediments from (a) a flush, two peat mires and two ponds from a 94 km transect along the Mohaka Fault trace (a northern extension of the Wellington Fault) set in the eastern foothills of the Ruahine Range, in western Hawkes Bay, New Zealand, and (b) from a lake at Te Pohue in northwestern Hawkes Bay, are analysed for their pollen and charcoal records to reconstruct the late Holocene vegetational and climatic history of the region.

Western Hawkes Bay lies westward of an obliquely converging plate boundary, the Hikurangi Trough. This oblique convergence has resulted in tectonic strain being partitioned into domains of extension, contraction and strike-slip across Hawkes Bay. Within the study area, strain has resulted dominantly in primary tectonic landforms such as fault scarps and fault lines, and secondary tectonic landforms such as tilted and folded surfaces. Features of movement along the Mohaka Fault in the geomorphology include right-laterally offset streams, ridges with distinctive linear troughs along the line of the fault and the formation of triangular spurs.

The region generally has a warm, dry climate, and suffers from drought periodically, with the drought often being broken by heavy rains in the autumn. These rains may be of cyclonic proportion. Due to both seismic and co-seismic activity in the region, the landscape is both uplifted and broken, and continually subject to mass movement; localised topoclimates are also common. This study determines how the western Hawkes Bay vegetational cover and its composition have changed in response to late Holocene climate changes through analysis of sediment cores. Also addressed is the extent to which tectonism, volcanicity, fire, major storm events and human activity have left a local overprint on the regional vegetational pattern.
Climatically the region may be divided into three sectors: a dry central sector, (Big Hill site); flanked by moister southern and northern sectors.

The regional vegetation in the southern sector was dominated by a *Nothofagus*-mixed podocarp forest in the Kashmir region from c. 800 yrs BP. up to when the site was affected by fire in 1888. In the Hinerua region, 14 kms farther north, *Nothofagus fusca* with a minor *Dacrydium cupressinum*-dominated/mixed podocarp forest, was established by c. 2790 yrs BP.

The regional vegetation of the central sector from c. 3700 to 3000 yrs BP. was predominantly a *Prumnopitys taxifolia*-mixed podocarp forest. There was also a notable *Nothofagus* component. There is a c. 1900 year hiatus in the vegetation record between c. 3000 and 1150 yrs BP when no sediment accumulated at the Big Hill site. The regional forest of the central sector at c. 1150 yrs BP. was still a predominantly *Prumnopitys taxifolia*-dominated/mixed podocarp forest. However, *Nothofagus* was less important in this latter forest. At Willowford, 18 kilometres north of Big Hill, the same *Prumnopitys taxifolia*-dominated/mixed podocarp forest was evident at about 500 yrs BP. At Hawkstone, 10 kms north of Willowford, a *Nothofagus/ P. taxifolia*-dominated mixed podocarp forest was established by 6500 yrs BP. About 3400 yrs BP *Dacrydium cupressinum* became the dominant podocarp, thus placing the Hawkstone region within the northern climatic sector from this date, up to the present.

The regional vegetation of the northern sector from 1850 yrs BP. until European land clearance in the late 19th century at Te Pohue, was a *Dacrydium cupressinum*-dominated/mixed podocarp assemblage with a notable *Prumnopitys taxifolia* component.

Several erosional events have been identified in the stratigraphy of the sites. By estimating the age of these events by sediment accumulation rates, some of these events have been tentatively linked to Grant's (1985) hypothesis of periodic climate-forced
erosional events having partially destroyed the forest cover in the western Hawkes Bay region. Using radiocarbon dates from this study, often in conjunction with sediment accumulation rates, it has been possible to identify some erosional events as earthquake generated by linking these events to other known and radiocarbon dated movements along the Mohaka Fault trace in western Hawkes Bay.

Volcanicity has been identified as a factor influencing forest cover in the northern part of western Hawkes Bay. At Hawkstone, microscopic charcoal has been identified at several levels throughout the 6500 year pollen record of the site. However, the sediment accumulation rate was too low to determine the exact nature of the disturbance, and the forest quickly recovered in each case. Although a 0.20 m layer of reworked lapilli from the Waimihia eruption (3280 ± 20 yrs BP.) was recorded at the site, no fire or disturbance to the vegetation was recorded. However, above the Taupo Tephra (1850 ± 10 yrs BP.) fire is continually recorded at the site. As a result the regional forest did not return. Primary ignimbrite from the Taupo eruption forms the base of the Te Pohue site. The regional forest was destroyed by fire in conjunction with this event. A similar forest to before the event, was re-established within c. 230 years.

Polynesian deforestation is identified by the advent of high frequencies of *Pteridium exculentum* and microscopic charcoal in the pollen record in the Willowford region c. 480 ± 170 yrs BP., and in the Big Hill region c. 435 ± 140 yrs BP.; and are coincident with the decline of indigenous forests in each case.

European settlement, commencing in the mid-nineteenth century at Te Pohue and about 1880 AD. at Hinerua, is identified by the decline of indigenous forests in these areas, coincident with the appearance of exotic pollen types such as *Pinus, Taraxacum* and pasture grasses.
ACKNOWLEDGEMENTS

I wish to thank Associate Professor Vince Neall, my chief supervisor, for reading my thesis, and for helpful suggestions on how it could be improved. I would also like to thank Professor John Flenley for reading and commenting on the palynological sections; for permission to use the Geography Department's Zeiss microscope and for making pollen analysis work available to me to pay for one radiocarbon date and some living expenses.

My thanks are also extended to Drs. Clel Wallace and Alan Palmer of the Soil & Earth Sciences group of the Institute of Natural Resources, Massey University for all their help over the past two years in sorting out many little, and not so little problems involved in my research.

I am also most grateful to Massey University for a Research Fund Grant to cover the cost of some radiocarbon dates, as well as for making available a two-year Graduate Assistantship in Earth Science, which helped with living expenses during the time of my studies.

In the Geography Department of Massey University thanks are also due to David Feek for assistance in the field (at times under very trying conditions); to Miss Leighanne Empson for assistance with the TILIA programme, and other incidental help; to Dr Patrick Hesp for making available copious hours of grain size analysis work that paid for a radiocarbon date and other study related expenses; and to Karen Puklowski, Sandy Robson and Olive Harris for their support and friendship.

Thanks also go to Peter van Essen of the Ecology Group of the Institute of Natural Resources at Massey University for identifying plant and wood specimens.

I would also like to thank the landowners and farmers of western Hawkes Bay who granted access to the study sites, and at times provided overnight accommodation and helpful knowledge of the local flora.
Table of Contents

Abstract ... I
Acknowledgements .. IV
Table of Contents .. V
List of Figures .. IX
List of Tables .. XIII
List of Appendices ... XIV

Chapter One - Introduction
1.1 Introduction .. 1
1.2 Aims .. 3
1.3 Objectives .. 3
1.4 Study area and Sites .. 4
1.5 Organisation of Thesis ... 7

Chapter Two - Literature Review
2. Introduction .. 8
2.1 Geology, Geomorphology & Tectonic Setting ... 8
2.2 Palaeoecology ... 14
2.3 Climate History ... 19
2.4 Erosion & Deforestation ... 24
2.5 Fire & Human Impact related Deforestation History 30
2.6 Earthquake History .. 34
Chapter Three - Principles & Methods Employed

3.1 Field Methods .. 40
3.1.1 Coring Methods .. 40
3.1.2 Core Preservation and Storage 44
3.2 Laboratory Techniques .. 44
3.2.1 Pollen Recovery Techniques 45
3.2.1.1 Potassium hydroxide treatment 46
3.2.1.2 Sodium phosphate treatment 46
3.2.1.3 Hydrofloric acid treatment 46
3.2.1.4 Acetolysis .. 47
3.2.1.5 Fine sieving .. 47
3.2.1.6 Oxidation .. 47
3.2.2 Mounting ... 48
3.3 Microscopy and Pollen Identification 48
3.4 Pollen Morphology .. 49
3.5 Photographic record of Field Techniques 50

Chapter Four - Results

4. General Introduction .. 53

4.1 Kashmir Site - Introduction 59
4.1.1 Geology & Geomorphology 61
4.1.2 Present-day Vegetation 61
4.1.3 Recent Site History ... 63
4.1.4 Palaeoecology ... 69
4.1.5 Discussion .. 76
4.2 Hinerua Site - Introduction .. 89
4.2.1 Geology & Geomorphology 90
4.2.2 Present-day Vegetation ... 93
4.2.3 Recent Site History ... 95
4.2.4 Palaeoecology ... 97
4.2.5 Discussion .. 103

4.3 Big Hill Site - Introduction .. 115
4.3.1 Geology & Geomorphology 117
4.3.2 Present-day Vegetation ... 117
4.3.3 Recent Site History ... 121
4.3.4 Palaeoecology ... 123
4.3.5 Discussion .. 131

4.4 Willowford Site - Introduction 149
4.4.1 Geology & Geomorphology 153
4.4.2 Present-Day Vegetation .. 154
4.4.3 Recent Site History ... 156
4.4.4 Palaeoecology ... 157
4.4.5 Discussion .. 163

4.5 Hawkstone Site - Introduction 175
4.5.1 Geology & Geomorphology 179
4.5.2 Present-day Vegetation .. 180
4.5.3 Recent Site History ... 182
4.5.4 Palaeoecology ... 184
4.5.5 Discussion .. 191
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td>Ball's Clearing Scenic Reserve, Puketitiri - a remnant podocarp forest</td>
<td></td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Location of the Study Area with reference to the North Island of New Zealand</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Location of the six sites cored for pollen analysis in western Hawkes Bay</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Samplers used to core the six sites</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The raft used to core the deep water sites being assembled on the lake at Te Pohue</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Preparing the Neale corer for use from the raft at a deep water site at Big Hill</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>The Neale corer being used to core compacted sediments at Kashmir</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Forest cover of Hawkes Bay over the last 800 years as influenced by gales, fire, sedimentation and human impact</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.1.1</td>
<td>Map of the Kashmir region in the vicinity of the Mohaka Fault</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.1.2</td>
<td>General view of the vegetation at the Kashmir site looking north from a colluvial fan situated south east of the site</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.1.3</td>
<td>A More detailed view of the vegetation around the Kashmir site</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.1.4</td>
<td>General view to the southwest of Kashmir showing the uplifted nature of the scrub and pasture covered terrain</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.1.5</td>
<td>General view to the southeast of Kashmir of the rejuvenating bush near the site and the erosion scarred high country beyond</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.1.6</td>
<td>View of the NNE-SSW trending Mohaka Fault trace upthrown to the east at Kashmir</td>
<td>68</td>
</tr>
</tbody>
</table>
Figure 4.1.7 A cut through a large dead rimu lying on the colluvial slope at Kashm i r.. 68
Figure 4.1.8 Relative Pollen Diagram - Kashmir site... 70
Figure 4.1.9 Absolute Pollen Diagram - Kashmir site.. 71
Figure 4.1.10 Stratigraphic column - Kashmir site... 78
Figure 4.1.11 Interpretive stratigraphy of the Kashmir site, based on sediment accumulation rates and some raw pollen counts of species indicative of specific ecological environments discussed in the text. 81
Figure 4.2.1 Map of the Hinerua region in the vicinity of the Mohaka Fault........... 91
Figure 4.2.2 Detailed view of the core site at Hinerua with the Mohaka Fault trace to the right and encroaching manuka scrublands on the steepening topography to the left... 92
Figure 4.2.3 Panoramic view of the Hinerua site looking north, with the Mohaka Fault scarp on the right and grass covered rolling hills with a minor manuka scrub cover, in the background to the northeast... 94
Figure 4.2.4 View of the Hinerua Thrust from the scarp of the MohakaFault at Hinerua... 94
Figure 4.2.5 Relative Pollen Diagram - Hinerua site... 98
Figure 4.2.6 Absolute Pollen Diagram - Hinerua site... 99
Figure 4.2.7 Stratigraphic column - Hinerua site... 105
Figure 4.2.8 Interpretive stratigraphy of the Hinerua site based on sediment accumulation rates and some raw pollen counts of species indicative of specific ecological environments discussed in the text. 107
Figure 4.3.1 Map of the Big Hill region in the vicinity of the Mohaka Fault........... 116
Figure 4.3.2 The sag pond cored along the Mohaka fault at Big Hill, the Ngaruroro River is visible in the distance... 118

XII
Figure 4.3.3 View of the Mohaka Fault trace at Big Hill. The trace appears a
break in a grass-covered slope and is upthrown to the east 119

Figure 4.3.4 Relative Pollen Diagram - Big Hill 124

Figure 4.3.5 Absolute Pollen Diagram - Big Hill 125

Figure 4.3.6 Stratigraphic Column - Big Hill 132

Figure 4.3.7 Interpretive stratigraphy of the Big Hill site, based on sediment
accumulation rates and some raw pollen counts of species
indicative of specific ecological environments discussed in the text . 135

Figure 4.4.1 Map of the Willowford region in the vicinity of the Mohaka Fault . 150

Figure 4.4.2 General view of Willowford and the pond cored, looking south . . 151

Figure 4.4.3 View to the north of the Willowford site showing an S-bend in the
local Willowford stream in the centre along the presumed trace of
the Mohaka Fault and the fault itself, visible as a break in slope . . 151

Figure 4.4.4 Relative Pollen Diagram - Willowford site 158

Figure 4.4.5 Absolute Pollen Diagram - Willowford site 159

Figure 4.4.6 Stratigraphic Column - Willowford site 164

Figure 4.4.7 Interpretive stratigraphy of the Willowford site based on sediment
accumulation rates and some raw pollen counts of species
indicative of specific ecological environments discussed in the text 167

Figure 4.5.1 Map of the Hawkstone region in the vicinity of the Mohaka Fault . 176

Figure 4.5.2 Coring the Typha-rich mire at Hawkstone 177

Figure 4.5.3 The NNE-trending, tree clad Mohaka Fault trace at Hawkstone,
adjacent to the mire that was cored 178

Figure 4.5.4 The mire at Hawkstone set within pasture clad rolling hills along
the Mohaka Fault scarp, as seen from a hill northwest of the mire . 178

Figure 4.5.5 Relative Pollen Diagram - Hawkstone site 185

Figure 4.5.6 Absolute Pollen Diagram - Hawkstone site 186
Figure 4.5.7 Stratigraphic Column - Hawkstone site. Top metre cored with a D corer; below 1 metre cored with a Hiller corer; lapilli layer (1.90 - 2.19 m) sampled by auger; below 2.10 m cored with a Hiller corer. 195

Figure 4.5.8 Interpretive stratigraphy of the Hawkstone site, based on sediment accumulation rates and some raw pollen counts of species indicative of specific ecological environments discussed in the text 196

Figure 4.6.1 Map of the Te Pohue Region showing the lake site cored and its proximity to the original Pohui and Ohurakura bush stands 209

Figure 4.6.2 Lake at Te Pohue. The moored raft, centre right of the figure, marks the core site 212

Figure 4.6.3 Overflow area at western end of lake at Te Pohue. In the middle background is the scar of a massive pre-Waimihia Tephra landslide that came off the Te Waka Ridge above. On the left, arrowed, is a debris fall that came off the limestone ridge above between the deposition of the Waimihia and Taupo Tephras 213

Figure 4.6.4 View from above the scar of the pre-Waimihia Tephra landslide, on the right, arrowed, is a second view of the post-Waimihia/pre-Taupo Tephra debris fall 215

Figure 4.6.5 Relative Pollen Diagram - Te Pohue site 222

Figure 4.6.6 Absolute Pollen Diagram - Te Pohue site 223

Figure 4.6.7 Stratigraphic column - Te Pohue site 231

Figure 4.6.8 Interpretive stratigraphy of the Te Pohue site, based on sediment accumulation rates and some raw pollen counts of species indicative of specific ecological environments discussed in the text 234

Figure 5.1 Vegetation history western Hawkes Bay from five sites along the Mohaka Fault trace and one from the lake at Te Pohue. The predominant forest type or types is indicated at each level unless forest cover is so reduced scrub, fernland or pasture cover is more important 247
Envoi

A). Present-day vegetation cover in the Mohaka Fault zone at Kashmir

B). Present-day vegetation cover in the Mohaka Fault zone at Big Hill

List of Tables

1. Location of pollen sites cored, together with their map reference, height above sea level and type of wetland ... 7

2.1 Tectonic and geomorphic features within the forearc basin and the frontal ridge tectonic domains ... 10

2.2 Faulting events along the Wellington/Mohaka Fault (other studies) 36

4. List of radiocarbon dates obtained for the six sites cored in western Hawkes Bay, together with details of their significance and laboratory determinations ... 54

4.1 Present-day native flora identified at the around the Kashmir site 62

5.1 Faulting events along the Mohaka Fault in western Hawkes Bay (this study) .. 286
List of Appendices

Appendix 1. Series of 55 electronically scanned pollen grains, showing the diagnostic features used to identify each pollen type in this study... i

Appendix 2. List of all earthquakes reported in the Waipawa Mail, 1878 - 1910... lvi

Appendix 3. Resume of early European reports on the cultivation and use of the fern root arhwe (Pteridium esculentum) by the early Maori... lxiv

Appendix 4. Resume of early European reports on the cultivation and use of the raupo reed (Typha angustifolia) by the early Maori... lxxii

Appendix 5. List of radiocarbon dates pertinent to Maori Occupation in Hawkes Bay... lxxxi