Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Optimisation of the Thermal Processing of Mussels

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Bioprocess Engineering at Massey University

Krisha M Mateparae
B.Tech (Hons)
2003
ABSTRACT

Perna canaliculus, more commonly known as the green-lipped mussel, is unique to New Zealand and is the foundation of the mussel farming industry in this country. This project aimed to identify practical ways to improve the thermal processing of mussels to maximise yield.

Initial work was carried out to characterise the composition of the mussel tissue. Following this, a method to quantify the cooking losses was developed. This methodology was used to examine the rate and extent of cooking losses in mussel tissue at various temperatures. Further to this it was possible, using differential scanning calorimetry, to examine the kinetics of protein denaturation associated with cooking losses.

The cook loss trials over various temperatures showed a definite increase in water loss once a temperature of approximately 65°C was reached. A relationship was developed between the water loss exhibited over a range of temperatures and the rate of protein denaturation. It was found that low temperature, long time cooking results in increased yields. These conditions will reduce the impact of temperature gradients through the mussel. The exact time temperature regime used commercially will be a compromise between moisture losses, microbial destruction, inactivation of rancidity causing enzymes and production restraints.

This regime was tested for whole and half shell mussels resulting in up to 4.5% increases in yield.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>CHAPTER 1 – PROJECT OVERVIEW</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 The operation in nelson</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.2 Process constraints for food safety</td>
<td>1-5</td>
</tr>
<tr>
<td>1.3 Project aim</td>
<td>1-6</td>
</tr>
<tr>
<td>CHAPTER 2 – LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Perna canaliculus</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1 Anatomy</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.1.1 Soft body tissues</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.1.2 Shell</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2 Composition</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2.3 Meat condition</td>
<td>2-6</td>
</tr>
<tr>
<td>2.3 General meat chemistry</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3.1 Meat chemistry</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3.1.1 Muscle structure and functionality</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3.1.1.1 Structure of skeletal muscle</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3.1.1.2 Muscle proteins</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3.1.1.3 Connective tissue</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4 Structural and functional changes induced by heating</td>
<td>2-12</td>
</tr>
<tr>
<td>2.4.1 Overall effects of heat on meat systems</td>
<td>2-12</td>
</tr>
</tbody>
</table>
2.4.2 Mechanism of water loss

2.4.2.1 Factors affecting protein denaturation

2.5 Characterisation of water in muscle

2.5.1 Importance of WHC

2.5.2 Methods of determining WHC

2.6 Conclusions

CHAPTER 3 - MUSSEL CHARACTERISATION

3.1 Mussel variability

3.2 Mussel condition

3.2.1 Methods and materials

3.2.1.1 Sample

3.2.2 Variation over the sampling period

3.3 Natural pH variation

3.4 Natural Salt variation

3.5 Mussel composition

3.6 Conclusion

CHAPTER 4 - CHARACTERISATION OF THE MOISTURE CONTENT OF MUSSEL MEAT

4.1 Preliminary variability

4.1.1 Nature of water associated with muscle

4.2 Characterisation of moisture in mussel tissue

4.2.1 Water holding capacity

4.2.1.1 Filter paper press method

4.2.1.2 Centrifuge method

4.2.1.3 Comparison of moisture in whole and homogenised mussels

4.3 Developed methodology

4.4 Conclusions

CHAPTER 5 - FRESH WATER MUSSEL COOKING

5.1 Introduction

5.2 Initial cooking trials

5.3 Experimental method development

5.3.1 Prediction of heating rates in mussels
5.3.1.1 Thermal properties
5.3.1.1.1 Specific heat capacity
5.3.1.2 Thermal conductivity
5.3.1.2 Model solution
5.3.2 Apparatus development and assessment
5.3.3 Conclusions
5.4 Dynamic cooking trials
5.5 Effect of temperature on rate of cooking losses
5.6 Effect of temperature on extent of cooking losses
5.7 Conclusions

CHAPTER 6 – KINETICS OF COOKING
6.1 Introduction
6.2 Differential scanning calorimetry
 6.2.1 Methods and materials
 6.2.1.1 Standard DSC trials
 6.2.1.2 Kinetic studies
6.3 Thermal transition in mussel fractions
6.4 Characterisation of the kinetics of protein denaturation
6.5 The effect of salt concentration on protein denaturation
6.6 The effect of cooking at various temperatures
6.7 Prediction of moisture loss from kinetic data
6.8 Conclusions

CHAPTER 7 – VALIDATION
7.1 Introduction
7.2 Methodology
7.3 Commercial implications

CHAPTER 8 – CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

NOMENCLATURE
LIST OF FIGURES

CHAPTER 1 – PROJECT OVERVIEW
Figure 1.1: Mussel processing flowchart for sealords operation, April 1999.

CHAPTER 2 – LITERATURE REVIEW
Figure 2.1: Perna with the left valve removed. (Jenkins, 1979).
Figure 2.2: Shells

CHAPTER 3 - MUSSEL CHARACTERISATION
Figure 3.1: Variation in condition index over experimental period
Figure 3.2: pH variation in raw mussels
Figure 3.3: Make up of a typical green-lipped mussel

CHAPTER 4 – CHARACTERISATION OF THE MOISTURE CONTENT OF MUSSEL MEAT
Figure 4.1: Water holding capacity using filter paper press method
Figure 4.2: Water losses as a function of centrifuge spin times
Figure 4.3: Loss of suspended solids at various centrifuge spin times
Figure 4.4: Comparison between whole and homogenised mussels
Figure 4.5: pH changes in homogenised mussels over time
Figure 4.6: pH variation of segments of mussel tissue following homogenisation
Figure 4.7: Diagram of the set-up of the centrifuge tube, glass beads and wire mesh

CHAPTER 5 – FRESH WATER MUSSEL COOKING
Figure 5.1: Individual weight losses over various cook times and sampling days
Figure 5.2: Water losses over time in mussel meat at varying temperatures
Figure 5.3: Temperature profile for whole and half mussels heated at 85°C
Figure 5.4: Physical model of heat transfer through the mussel
Figure 5.5: Heat transfer predictions determined using both a fixed surface temperature and resistance to external heat transfer
Figure 5.6: Affect of increased heat transfer coefficient on the heating rate within mussel meat
Figure 5.7: Apparatus used to control mussel thickness during heating (Arrows indicate the placement of screws)

Figure 5.8: Heating rates of mussels in 65°C waterbath, showing the dependence on position in the initial prototype

Figure 5.9: Comparison between mussel heating rates in an agitated and non-agitated water bath

Figure 5.10: Relationship between temperature change and rate of water loss in whole mussels

Figure 5.11: Relationship between temperature changes and rate of water loss for flattened mussels

Figure 5.12: Effect of cooking on total moisture content at various temperatures

Figure 5.13: Effect of cooking on free moisture content at various temperatures

Figure 5.14: Effect of cooking on bound moisture content at various temperatures

Figure 5.15: Steady state cooking losses

Figure 5.16: Average steady state moisture contents of mussels cooked for 5 minutes at various temperatures

Figure 5.17: Summary of changes in water content as a function of temperature

CHAPTER 6 – KINETICS OF COOKING

Figure 6.1: Comparison of the thermal transition temperatures of different sections of mussel anatomy

Figure 6.2: Determination of kinetic values for myosin (peak I) and actin (peak II)

Figure 6.3: Influence of salt concentration on Tmax of myosin and actin in mussel tissue, where peak I and II are myosin and actin respectively

Figure 6.4: DSC profile of mussel samples cooked at various temperatures

Figure 6.5: Actin and myosin denaturation as a function of temperature. Also showing the unaccomplished change in both bound and total water contents as a function of temperature.

Figure 6.6: Relationship between Y(water loss) and Y(actin denaturation) where the R^2 value is 0.9486

CHAPTER 7 – VALIDATION

Figure 7.1: Boxplot of water content remaining at 85°C for 9mins and 90°C for 5mins for unshucked whole mussels, where y-axis is the water remaining compared to the initial weight of the sample

Figure 7.2: Boxplot of water content remaining at 85°C for 3mins and 90°C for 2mins for half shell mussels, where the y-axis is the water remaining compared to the initial weight of the sample
LIST OF TABLES

CHAPTER 2 - LITERATURE REVIEW
Table 2:1: Proximate composition of shellfish (g/100g wet weight) (Vlieg, 1988 and George et al., 1988)
Table 2:2: Chemical composition of typical adult mammalian muscle (Lawrie, 1998)
Table 2:3: Comparison of different meat types

CHAPTER 3 - MUSSEL CHARACTERISATION
Table 3:1: Proximate composition of shellfish (g/100g wet weight) (Vlieg, 1988)
Table 3:2: Protein content of freeze-dried mussel segments (Williams, 2000)
Table 3:3: Amino acid results for mussel adductor sample

CHAPTER 6 - KINETICS OF COOKING
Table 6:1: Peak temperature of myosin for various species
Table 6:2: Effect of scanning rate on the thermal denaturation peaks in mussel meat
Table 6:3: Determination of the Ea and Z