Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PACED SERIAL ADDITION:

An Investigation into the Nature of the Cognitive Processes Involved in PASAT Performance

Thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Psychology at Massey University

MARK STEWART

1995
ACKNOWLEDGEMENTS

This work is dedicated to my late father, Brian.

I wish to express my appreciation to Dr John Podd for his support and guidance in his capacity as supervisor for this thesis. I also wish to acknowledge the support, encouragement, and tolerance I received from my family and friends, especially Mary.

I am also grateful to Dr Janet Leatham (Psychology Clinic Director and Senior Lecturer, Psychology Department, Massey University) for her help in the literature search, Mr Bernard Norman (Senior Clinical Psychologist, Manawaroa Centre for Psychological Medicine) for his advice on the experimental design and the loan of materials and equipment, Mr Harvey Jones (Computer Programmer, Psychology Department, Massey University) for his assistance in technical matters, and Dr John Spicer (Senior Lecturer, Psychology Department, Massey University) for his advice and assistance concerning the statistical analyses.

I also wish to thank all the individuals, students of Massey University, who participated as subjects in this research.
ABSTRACT

The Paced Auditory Serial Addition Test (PASAT) of Gronwall and Sampson (1974) is a neuropsychological test of attention used in both research and clinical settings (Lezak, 1983). However, a review of the literature revealed that the cognitive processes and attentional factors underlying PASAT performance are not well understood. Two experiments were conducted with the aim of providing further empirical and theoretical insights into PASAT performance. In Experiment 1, 16 subjects (8 male and 8 female) performed auditory and visual versions of a shortened paced serial addition task. It was found that PASAT performance in the visual stimulus modality was superior, but that, as indexed by accuracy and error scores, the pattern of performance as a function of the rate of stimulus presentation (1.2, 1.6, 2.0, and 2.4 s) was similar. These results are consistent with the idea that the nature of the cognitive processing involved is independent of stimulus modality. The design of Experiment 2 was the same as the first, except that divided field stimulus presentation was used in an attempt to test two opposing theories of attention. The results were not consistent with the hypothesis. The findings of both experiments were discussed in terms of the possible role of attention deficits in PASAT performance. An interesting finding was that the superior performance of male subjects in Experiment 1 was reversed in Experiment 2. This differential effect for divided field stimulus presentation as a function of gender may be partly accounted for by differing degrees of cerebral lateralisation for males and females.
CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

Overview

The Paced Auditory Serial Addition Test (PASAT)

PASAT Research

Nomenclature and Measures

Empirical Findings for Normal Subjects

Performance Changes Related to Experimental Variables

CI scores by Task Duration

Error Scores by Presentation Rate

CI Scores by Interstimulus Interval

Practice

CI scores by Stimulus Presentation Duration

CI Scores by Stimulus Presentation Modality
Conclusions .. 127

REFERENCES .. 129

APPENDICES .. 140
List of Appendices .. 140
LIST OF FIGURES

Figure 1. A diagrammatic representation of the temporal relationship between the "stimulus on" and "stimulus off" durations for paced serial addition. 7

Figure 2. Schematic diagram of the apparatus used for the presentation of the auditory stimuli and the recording of subject responses in both Experiments 1 and 2. .. 52

Figure 3. Schematic diagram of the apparatus used for the presentation of the visual stimuli and the electronic recording of subject responses in Experiments 1 and 2. ... 53

Figure 4. Mean frequency of correct responses falling within the response interval (CI) for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. 58

Figure 5. Mean frequency of numerically correct responses falling outside the response interval (CO) for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. 61

Figure 6. Mean frequency of incorrect responses (INC) for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. 62
Figure 7. Mean frequency of omissions (OM) for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. ... 63

Figure 8. Mean percentage of numerically correct responses falling outside the ISI (CO), numerically incorrect responses (INC), and omissions (OM) for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. 64

Figure 9. Mean percentage of numerically correct responses falling outside the ISI (CO), numerically incorrect responses (INC), and omissions (OM) as a percentage of all errors for all subjects in the auditory and visual stimulus presentation modalities as a function of presentation rate. 65

Figure 10. Mean frequency of correct responses falling within the response interval (CI) for all subjects in the auditory and visual stimulus presentation modalities, collapsed across presentation rate, as a function of successive blocks of 10 digit pairs. 67

Figure 11. Mean frequency of correct responses falling within the response interval (CI) for male (M) and female (F) subjects in the auditory (A) and visual (V) stimulus presentation modalities as a function of presentation rate. 69

Figure 12. A hypothetical representation of the processing elements relating to stimuli, memory, mental transformations, and responding for paced serial addition. 88
Figure 13. Mean percentage of responses scored as correct and falling within the response interval (CI) in the auditory stimulus modality for all subjects as a function of the rate and ear of stimulus presentation. 105

Figure 14. Mean percentage of responses scored as correct and falling within the response interval (CI) in the visual stimulus modality for all subjects as a function of the rate and visual field of stimulus presentation. 106

Figure 15. Mean percentage of responses scored as correct and falling within the response interval (CI) in the auditory stimulus modality for all subjects as a function of presentation rate and the ear to which both stimuli related to each response were presented (LL = left-left, RR = right-right). 109

Figure 16. Mean percentage of responses scored as correct and falling within the response interval (CI) in the visual stimulus modality for all subjects as a function of presentation rate and the visual field in which both stimuli related to each response were presented (LL = left-left, RR = right-right). 110
List of Tables

Table 1. Mean frequencies (M) and standard deviations (s.d.) for responses scored as correct and falling within the response interval (CI) for all subjects as a function of the mode and rate of stimulus presentation. .. 57

Table 2. Mean frequencies (M) and standard deviations (s.d.) for three types of error score .. 60

Table 3. Mean frequencies (M) and standard deviations (s.d.) of correct responses falling within the response interval (CI) for all subjects for the three successive blocks of 10 digit pairs collapsed across presentation rate. 66

Table 4. Mean frequencies (M) and standard deviations (s.d.) for correct responses falling within the response interval (CI) for male and female subjects as a function of the mode and rate of stimulus presentation. .. 68

Table 5. Mean percentages (M) and standard deviations (s.d.) for responses scored as correct and falling within the response interval (CI) for all subjects as a function of the mode and rate of stimulus presentation and the ear or visual field in which stimulus n was presented. ... 104

Table 6. Mean percentages (M) and standard deviations (s.d.) for responses scored as correct and falling within the response interval (CI) for all subjects as a
function of the mode and rate of stimulus presentation and the ear or visual field to which both stimuli related to each response were presented (LL = left-left, RR = right-right). .. 108

Table 7. Mean frequencies (M) and standard deviations (s.d.) for correct responses falling within the response interval (CI) for male and female subjects in Experiments 1 and 2 as a function of the mode and rate of stimulus presentation. .. 118

Table 8. Mean number of responses scored as numerically correct and falling within the response interval (CI) in the auditory stimulus presentation modality, collapsed across presentation rate, for each subject as a function of sex and Experiment. 121