Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Adding Traceability to an Educational IDE

A thesis presented in partial fulfilment of the requirements for the Master degree in Computer Science at Massey University, Manawatu, New Zealand

Author: Li Sui

Supervisor: A/Pro Jens Dietrich
A/Pro Eva Heinrich

August 12, 2016
Contents

1 Introduction ... 9

2 Background ... 14
 2.1 Challenges in teaching/learning programming and existing approaches 14
 2.1.1 Gamification ... 14
 2.1.2 Game classification ... 16
 2.1.3 Existing educational platforms 17
 2.2 Related work .. 21
 2.2.1 SoGaCo ... 22
 2.2.2 PrimeGame ... 23
 2.2.3 PrimeGame strategy classification 25
 2.3 Conceptual foundations ... 30
 2.3.1 Notional machines .. 30
 2.3.2 Conceptual model .. 32
 2.4 Technical foundations .. 34
 2.4.1 Continuations ... 34
 2.4.2 The Java debug interface 35
 2.4.3 Instrumentation libraries 36
 2.4.4 Instrumentation .. 38

3 A Layered and Reversible Notional Machine 44
 3.1 Bi-directionality .. 44
 3.2 Two level hierarchy .. 45

4 Design and Implementation ... 48
 4.1 Client .. 48
List of Figures

1. Thesis Structure .. 12
2. Greenfoot Interface 19
3. If condition in Blockly 20
4. PrimeGame Board ... 24
5. Cautious VS Greedy 33
6. Prime number VS Cautious 33
8. Example Code before Instrumentation 39
9. Abstract Syntax Tree 40
10. Example Code after Instrumentation 41
11. Eclipse Debugger ... 44
12. Program code Comprehension: Assignment 45
13. Program code Comprehension: Method Call 46
14. Game strategy comprehension: State Changing 46
15. Visual plus texture view 47
16. Editor page .. 49
17. Testing page ... 49
18. Bot Selection .. 50
19. Choose Who Plays First 51
20. Snapshot .. 52
22. Nested Map data structure for Source Code Instrumentation 54
23. Byte code Instrumentation 55
24. Example code: Miss capture on different JDK version 57
25. Level of Access: depth 2 59
Listings

1. Randomly strategy .. 26
2. Cautious strategy ... 26
3. Greedy strategy ... 27
4. Largest prime number strategy 27
5. Max-gain strategy .. 28
6. For loop ... 30
7. Debug For loop .. 31
8. Bad Writing Habit .. 43
9. A variable that stays the same across all the moves 62
10. A variable that stays the same in a single move 62
11. Changing variable ... 62
12. Adding a variable using edit distance 63
13. Remove a number in an array using the edit distance 64
14. Remove a number in an array using the tree edit distance 64
15. Monitor field .. 82
16. Connect to VM .. 84
17. Monitored Code ... 86
18. JavaFlow Code Example ... 87
19. (JDK version: 1.8.0_60) Bytecode Demonstration 88
20. BlackMamba Source Code ... 103
List of Tables

1 List of educational platforms ... 17
2 Local Variable Table .. 55
3 Time for Building bots using source code instrumentation (milliseconds) ... 67
4 Time for Building bots using byte code instrumentation(milliseconds) 70
5 Different Encoding and Compression Result in Time(milliseconds) . 71
6 Different Encoding and Compression Result in Memory(KB). (blue:depth 2, red:depth 3) .. 72
Abstract

High dropout and failure rate in introductory programming courses indicate the need to improve programming comprehension of novice learners. Some of educational tools have successfully used game environments to motivate students. Our approach is based on a novel type of notional machine which can facilitate programming comprehension in the context of turn-based games. The first aim of this project is to design a layered notional machine that is reversible. This type of notional machine provides bi-directional traceability and supports multiple layers of abstraction. The second aim of this project is to explore the feasibility and in particular to evaluate the performance of using the traceability in a web-based environment. To achieve these aims, we implement this type of notional machine through instrumentation and investigate the capture of the entire execution state of a program. However, capturing the entire execution state produces a large amount of tracing data that raises scalability issues. Therefore, several encoding and compression methods are proposed to minimise the server work-load. A proof-of-concept implementation which based on the SoGaCo educational web IDE is presented. The evaluation of the educational benefits and end user studies are outside the scope of this thesis.
Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor A/Prof. Jens Dietrich for the continuous support of my study and related research, for his patience, motivation, and immense knowledge. His guidance has pointed me in the right direction throughout the work.

I also would like to express my appreciation to my co-supervisor A/Prof Eva Heinrich for her patient guidance and advice on computer science education. My sincere thanks also goes to Prof. Manfred Meyer and Mr. Johannes Tandler for their active collaborations on writing related papers.

Finally, I must express my very profound gratitude to my parents with unfail- ing support and continuous encouragement.