Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Determining the Validity and Reproducibility of a Feeding Assessment Tool to Assess Complementary Food Group Intake in New Zealand infants aged 9-12 months

A thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Nutrition and Dietetics at Massey University, Albany, New Zealand.

Ashleigh Jackson
2016
Abstract

Background: Collection of information that reflects the dietary intake of infants is challenging. Food frequency questionnaires are commonly used to assess habitual dietary intake, as they are quick and easy to administer. Food frequency questionnaires are used within many studies to assess this aspect of an infant’s diet, yet very few have been validated.

Objectives: This study aimed to investigate the relative validity and reproducibility of a complementary food questionnaire designed to assess food group intake in infants aged 9-12 months.

Methods: Participants were a convenience sample of caregivers of infants aged 9-12 months who completed the complementary food questionnaire (CFQ) at baseline (CFQ-1) and four weeks later (CFQ-2) to assess reproducibility. A 4-day weighed food record (4DWFR) was completed between these assessments to determine the validity of CFQ-1. Foods appearing in the 4DWFR were classified into the same 49 food items as the CFQ. Foods from both the 4DWFR and the CFQ were further classified into main food groups (breads and cereals; fruits; vegetables; dairy products; meat and protein; and occasional foods). Agreement between the two methods for intake of main food groups (frequency and grams eaten) was assessed using paired t-tests, correlation coefficients, cross-classification, the weighted κ statistic and Bland and Altman analysis.

Results: For grams of food groups consumed, validity correlations ranged from 0.15 (fruit) to 0.65 (vegetables), with an average correlation of 0.36. Correlations were significant for all food groups with the exception of fruit. Correct classification into the same tertile from the CFQ-1 and 4DWFR ranged from 38.7% (vegetables) to 65.2% (breads and cereals). Misclassification into opposite tertiles ranged from 2.0% (occasional foods) to 16.3% (vegetables). Reproducibility correlations were significant for all six food groups and ranged from 0.37 (fruit) to 0.84 (occasional foods), with an average correlation of 0.58. When comparing CFQ-1 and CFQ-2, participants correctly classified into the same tertile ranged from 48.9% (meat and protein) to 72.6% (breads and cereals). Misclassification ranged from 3.9% (breads and cereals) to 11.8% (meat and protein).
Conclusion: The feeding assessment tool appears to have reasonable validity and good reproducibility for assessing complementary food group intake in infants aged 9-12 months. The CFQ could be used in future research as a simple way to assess complementary food group intake, where it is not feasible or appropriate to employ weighed food records.

Keywords: assessment; diet; infant; nutrition; questionnaire; valid
Acknowledgements

This research could not have been completed without the support and input of a number of people. Firstly, I would like to thank the volunteers involved in this research for completing study questionnaires in a timely and efficient manner, without their participation this would not have been possible.

I would like to thank my two main supervisors for their input: Cathryn Conlon and Kathryn Beck. Both of whom have shared their knowledge and skills throughout the research process including the statistical analysis, interpretation and presentation of study results. I am truly grateful for the endless support and advice from each. Chris McKinlay thank you for your assistance with the questionnaire and feedback in the final editing of the thesis. Owen Mugridge for the assistance with recruitment and administration of study questionnaires. Thank you to Sarah and Sue for all your help and support with all the administrative side of my project.

I would also like to thank Rachel Blair and Emily Sycamore for your support, lengthy discussions and cups of tea that were always needed throughout our projects and to get to the end. Thank you for making my days in Auckland fun – it has been a pleasure working alongside you.

My family: Mum, Dad, Granny, Gramps, Matt and Tim. The support over the last two years, and every year before that, has been endless and I am extremely thankful. Thank you for all your endless support both emotionally and financially to achieve my goals, for letting me explain everything to you, for you pretending to understand and for offering advice you know I will ignore. To my wonderful group of friends, in particular Kerri Loughhead – for the motivation and encouragement throughout, you were never more than a phone call away, your moral support has made this thesis possible, I am exceptionally lucky to have you all.

To my partner Troy, thank you for all your encouragement, always making me smile and reminding me of what is most important in life.
Table of contents

ABSTRACT I

ACKNOWLEDGEMENTS III

TABLE OF CONTENTS IV

LIST OF TABLES VII

LIST OF FIGURES VIII

ABBREVIATIONS LIST IX

CHAPTER 1: INTRODUCTION 1

1.1 Purpose of the study 4

1.2 Aims and objectives 4

1.3 Thesis structure 5

1.4 Contribution of researchers 6

CHAPTER 2: LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Dietary intake and health in infants 7

2.3 Dietary assessment methods used in infants 8

2.3.1 Dietary assessment methods 8

2.4 Dietary assessment challenges in the infant population 12

2.4.1 Breastfeeding 12

2.4.2 Estimating portion size and under/over-reporting 13

2.4.3 Plate wastage 14

2.4.4 Dietary variation 14

2.4.5 Dietary analysis of infants diets 15

2.4.6 Selecting a dietary assessment method to be used in research 15

2.5 Considerations when assessing the validity of a dietary assessment method 16

2.5.1 Study population 16

2.5.2 Sample size and recording days required 17

2.5.3 Reference method 18

2.5.4 Sequence of administration 19

2.6 Statistical analysis of a validation study 19

2.6.1 Validity 19
List of tables

Chapter 1
Table 1.1 Contribution of researchers to the study 6

Chapter 3
Table 3.1 Validated dietary assessment methods in infants <12 months 34

Chapter 4
Table 4.1 Characteristics of infant parent pairs who completed the study 47
Table 4.2 Validity of CFQ for frequency of food group intake compared with WFR 48
Table 4.3 Validity using comparison of daily amount of food groups consumed over four days between the CFQ-1 and the 4DWFR 49
Table 4.4 Cross-classification and Weighted Kappa for daily amount consumed between CFQ-1 and 4DWFR (n=49) 50
Table 4.5 Determination of reproducibility using comparison of frequency of food groups consumed over four days between CFQ-1 and CFQ-2 51
Table 4.6 Reproducibility using comparison of daily amount of food groups consumed over four days between CFQ-1 and CFQ-2 52
Table 4.7 Cross-classification and Weighted Kappa for daily amount consumed between CFQ-1 and CFQ-2 (n=51) 52

Supplementary results tables
Table 1 Frequency of participants by frequency of consumption of food items over four days between CFQ-1 and CFQ-2 117
Table 2 Validity using comparison of frequency of food items consumed over four days between the CFQ and the 4-day weighed food record. 124
Table 3 Determination of reproducibility using comparison of frequency of food items consumed over four days between the CFQ-2 and CFQ-2 128
Table 4 Validity using comparison of daily amount of food items consumed over four days between the CFQ and the 4-day weighed food record. 132
Table 5 Determination of reproducibility using comparison daily amount of food items consumed over four days between the CFQ-1 and CFQ-2 136
Table 6 Weights (g) used for statistical analysis of daily amount used for each food item from FoodWorks8 140
List of figures

Chapter 4

Figure 4.1 Participant flow diagram 46

Figure 4.2 Bland-Altman plots of agreement for (A) frequency of breads and cereals and (B) mean daily amount of breads and cereals between CFQ-1 and 4DWFR 50

Figure 4.3 Bland-Altman plots of agreement for (A) frequency of breads and cereals and (B) mean daily amount of breads and cereals between CFQ-1 and CFQ-2 53

Appendices

Figure A.1 Validation of a complementary food questionnaire (CFQ) against a 4 day weighed food record in 9-12 month old infants study flow diagram 65

Figure B.1 Bland-Altman plots of agreement between frequency and between amounts for all food groups 71
Abbreviations list

24HR Twenty-four hour recall
3DEFR Three day estimated food record
4DWFR Four day weighed food record
CI Confidence Intervals
CFQ Complementary Food Questionnaire
cm Centimetre
DLW Doubly labelled water
e.g. example
EFR Estimated food record
FFQ Food Frequency Questionnaire
g Gram
GUinZ Growing up in New Zealand
ID Identification
k Weighted Kappa statistic
Kg Kilogram
LOA Limits of Agreement
MoH Ministry of Health
n number
NDNS National diet and nutrition survey
NZ New Zealand
NZEO New Zealand European and Others
r Pearson’s correlation coefficient
SD Standard deviation
SFFQ Semi-quantitative food frequency questionnaire
SPSS Statistical Package for the Social Sciences
TBSP Tablespoon
tsp teaspoon
WFR Weighed food record
WHO World Health Organisation
> Greater than
< Less than