Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Enacting Challenging Tasks:
Maximising Opportunities for Students' Mathematical Learning

A thesis presented in partial fulfilment of the requirements for the degree of Master of Education at Massey University, Palmerston North, New Zealand

Katherine Mary Freeman 2016
Abstract

Three teachers of year 7 and 8 learners explored pedagogical approaches that exemplified current research on maximising opportunities for students to engage with and learn from challenging mathematics tasks. This study examined the learning opportunities afforded by the task enactments in the teachers’ classrooms. The study also considered teachers’ perspectives on a planning and lesson structure that exemplified explored approaches, and the challenges teachers experienced in implementing the tasks and approaches.

Reforms in mathematics education that have called for change in how teachers view mathematical knowledge, the value and purpose of social interaction in the classroom, and teachers’ role as participants in classroom discourse, have influenced pedagogical approaches to the enactment of classroom tasks. Relevant literature was reviewed that illustrated the importance of tasks in affording opportunities for students to engage in meaningful mathematical practices and discourse, and construct conceptual mathematical understanding. Evidence was provided that teachers’ pedagogical decisions and actions play a significant role in optimising opportunities for student learning from tasks, and that teachers’ task implementations are mediated by their intentions, goals, knowledge, attitudes and beliefs.

The qualitative methodology chosen for this study aligned with case study and design-based research approaches. Multiple data sources were collected, and systematic analysis and triangulation of data alongside collaboration between the researcher and participant teachers strengthened the research findings.

The study revealed the influence of task selection on the type of mathematical activity afforded value in classrooms. The planning template and lesson structure prompted purposeful decision-making that strengthened teachers’ task enactments, including explicit consideration of mathematical ideas inherent in tasks, students’ prior understandings, and the role of task variations in supporting students’ access to tasks. The study demonstrated that different enactments from the same planning resulted in contrasting opportunities for student learning. A noteworthy difference was the extent to which the mathematical ideas inherent in the task were explicitly addressed by teachers.

The results revealed the impact of teachers’ decisions when selecting and implementing classroom tasks, and offered insights into purposeful pedagogical actions that teachers could incorporate into their practice to maximise opportunities for their students to learn mathematics.
Acknowledgements

I would like to acknowledge and thank the people who made this study possible. Thank you to my principal and Board of Trustees for their encouragement and support not only this year, but over the four years leading up to this research project. They have consistently encouraged me to work towards a vision for ambitious mathematics education practices in our school, to take up opportunities to extend my own practice and understanding, and supported me to take on further study.

I wish to acknowledge and thank my main supervisor, Professor Glenda Anthony, who provided positive and generous support, as well as invaluable professional advice and input into this study. My thanks extend to Dr Jodie Hunter, my second supervisor, for her supportive professional input and feedback.

Most importantly I wish to thank the teachers who participated in the study. They bravely opened their classrooms and their teaching practice to scrutiny, and willingly committed time and energy to challenging their practice. I would also like to thank the students in the classrooms whose enthusiasm for mathematics learning sustains my passion for teaching, and who were a constant reminder of why this study was worth doing.
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables

Chapter 1:
Introduction
1.1 Background to the Study
1.2 Research Objectives
1.3 Overview

Chapter 2:
Literature Review
2.1 Introduction
2.2 Perspectives on Mathematics Teaching and Learning
 2.2.1 The Nature of Mathematics
 2.2.2 Social Theories of Learning
 2.2.3 Communities of Mathematical Inquiry
 2.2.4 Variation Theory
2.3 The Role of Persistence
2.4 Classroom Mathematics Tasks
 2.4.1 Task Types and Purposes
 2.4.2 Mathematical Task Framework
 2.4.3 Worthwhile Tasks
 2.4.4 Cognitive Demand
2.5 The Role of Big Mathematical Ideas
2.6 Teacher Knowledge
2.7 Enacting Challenging Tasks in the Classroom
 2.7.1 Maintenance of Cognitive Demand
 2.7.2 Maintenance of Mathematical Focus
 2.7.3 Fostering Productive Discourse
2.8 Potential Constraints
2.9 Differentiating Learning
 2.9.1 Enabling and Extending Prompts
2.10 Summary

Chapter 3:
Research Design
3.1 Introduction
3.2 Methodology
 3.2.1 Case Study
 3.2.2 Design-Based Research
3.3 Role of the Researcher
3.4 Data Collection
Chapter 4: Intervention

4.1 Introduction

4.2 Overview of Teacher Professional Learning Sessions

4.3 Session 1: What are Good Tasks and Why are they Important?

4.4 Content Specific Open-ended Tasks

4.5 Session 2: How can we Implement Good Tasks to Maximise Student Engagement with Mathematical Ideas?

4.6 Proposed Lesson Structure

4.6.1 Launch

4.6.2 Explore

4.6.3 Summary

4.6.4 Planning Template

4.7 Session 3: Task Selection and Lesson Planning

4.8 Summary

Chapter 5: Task One

5.1 Introduction

5.2 The Task

5.3 Teacher Preparation and Planning

5.3.1 Mathematical Goals for the Lesson

5.3.2 Anticipating Student Difficulties

5.3.3 Anticipating Solutions and Strategies

5.3.4 Enabling and Extending Prompts

5.3.5 Arranging for Learning

5.4 Nanette’s Lesson: Looking for Three More

5.4.1 Task Launch

5.4.2 Task Explore

5.4.3 Task Summary

5.4.4 Discussion

5.5 Sally’s Lesson: Looking for Three More

5.5.1 Task Launch

5.5.2 Task Explore

5.5.3 Task Summary

5.5.4 Discussion

5.6 Summary
Chapter 6: Task Two
6.1 Introduction
6.2 The Task
6.3 Teacher Preparation and Planning
 6.3.1 Mathematical Goals for the Lesson
 6.3.2 Support for Perseverance, Accountability, and Collaboration
 6.3.3 Anticipating Methods, Solutions, and Difficulties
 6.3.4 Enabling and Extending Prompts
6.4 Sally’s Lesson: Measuring Money
 6.4.1 Task Launch
 6.4.2 Task Explore
 6.4.3 Task Summary
 6.4.4 Discussion
6.5 Louise’s Lesson: Measuring Money
 6.5.1 Task Launch
 6.5.2 Task Explore
 6.5.3 Task Summary
 6.5.4 Discussion
6.6 Summary

Chapter 7: Task Three
7.1 Introduction
7.2 The Task
7.3 Teacher Preparation and Planning
7.4 Nanette’s Lesson: Wrap the Present
 7.4.1 Task Launch
 7.4.2 Task Explore
 7.4.3 Task Summary
 7.4.4 Discussion
7.5 Summary

Chapter 8: Teachers’ Perspective
8.1 Introduction
8.2 Planning
8.3 Implementation
8.4 Challenges
8.5 Summary

Chapter 9: Conclusion
9.1 Introduction
9.2 Teachers’ Pedagogical Decisions in Relation to:
 9.2.1 Opportunities Afforded by the Task
 9.2.2 Task Planning
 9.2.3 Task Implementation
9.3 Concluding Thoughts, Implications, and Opportunities arising
References

Appendices

Appendix A: Teacher Survey
Appendix B: Semi-structured Group Interview Questions
Appendix C: Board of Trustees Information Sheet and Consent Form
Appendix D: Teacher Information Sheet and Consent Form
Appendix E: Student and Parent Information Sheet and Consent Form
Appendix F: Task Analysis Guide (Stein et al., 2009, p. 6)
Appendix G: Mathematics Task Planning Template
List of Figures

Figure 2.1 Mathematical Tasks Framework (Stein et al., 1996) 12
Figure 4.1 Excerpt from Teacher Professional Learning Session One (adapted from Stein et al., 2009) 35
Figure 4.2 Task from Teacher Professional Learning Session Two 37
Figure 4.3 Excerpt from Teacher Professional Learning Session Two 37
Figure 4.4 Activity from Teacher Professional Learning Session Two (adapted from Stein & Smith, 1998, p. 274) 38
Figure 5.1 Procedure and trial and improve strategy, Example 1 45
Figure 5.2 Procedure and trial and improve strategy, Example 2 46
Figure 5.3 Solution using total height approach 47
Figure 5.4 Strategy that does not address intended mathematics 50
Figure 5.5 Isabel’s solution demonstrating misconception 51
Figure 6.1 Teachers’ anticipated strategy for area task 56
Figure 6.2 Value of 2m of $1 coins 57
Figure 6.3 Value of square metre of 10c pieces, Example 1 58
Figure 6.4 Value of square metre of 10c pieces, Example 2 58
Figure 6.5 Value of one litre of 20 cent pieces, Example 1 59
Figure 6.6 Value of one litre of 20 cent pieces, Example 2 59
Figure 7.1 Excerpts from teachers’ planning for task 3 65
Figure 7.2 Strategy from measuring an actual box 66
Figure 7.3 Assuming box was a cube 67
Figure 7.4 Students’ solution representation 67
Figure 7.5 Approach resulting in multiple solutions, Example 1 68
Figure 7.6 Approach resulting in multiple solutions, Example 2 68

List of Tables

Table 2.1 Levels of cognitive demand ordered from highest to lowest, their definitions and examples 14
Table 2.2 Factors associated with maintenance and decline of high-level tasks (Stein & Smith, 1998, p. 274) 18
Table 8.1 Frequency of teacher responses to statements about planning 72
Table 8.2 Frequency of teacher responses to statements about task implementation 73