Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
COMPARATIVE ANALYSIS OF THE PRODUCTIVITY LEVELS
ACHIEVED THROUGH THE USE OF PANELISED PREFABRICATION
TECHNOLOGY WITH THOSE OF TRADITIONAL BUILDING SYSTEM
COMPARATIVE ANALYSIS OF THE PRODUCTIVITY LEVELS
ACHIEVED THROUGH THE USE OF PANELISED PREFABRICATION
TECHNOLOGY WITH THOSE OF TRADITIONAL BUILDING SYSTEM

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)
in
Construction

School of Engineering & Advanced Technology
Massey University
Albany
New Zealand

Wajiha Mohsin Shahzad
April 2016
STATEMENT OF ORIGINALITY

I declare that this thesis is my own work, except where due acknowledgement is made, and that it has not been previously included in a thesis, dissertation or report submitted to this University or to any other institution for degree or any other qualification.

Wajiha Mohsin Shahzad
ABSTRACT OF RESEARCH

Several studies have documented benefits of prefabricated building system compared to the traditional approach. Despite the acknowledged benefits of prefabrication, its application is generally low in the New Zealand construction industry. This low uptake is largely attributed to the fact that the documented benefits of prefabrication technology are anecdotal, or based on investigations of isolated case studies. This study aims to contribute to filling this knowledge gap by analysing cost savings, time savings, and productivity improvement achievable by the use of panelised prefabrication in place of the traditional building system. A two-phased mixed method of research was adopted for the study. The first phase involved the use of case study-based archival research to obtain qualitative data from records of 151 completed building projects in three cities of New Zealand – Auckland, Christchurch and Wellington. The second phase involved the use of questionnaire survey to obtain feedback from industry stakeholders. Results showed that the use of panelised prefabrication in place of traditional building system contributed to 21 percent cost saving, 47 percent time saving and 10 percent average improvement in the productivity outcomes in the building projects. Results further showed that 17 factors could significantly influence the levels of benefits achievable with the use of prefabrication technology. ‘Building type’ and ‘location’ were the factors having the most significant influence on the benefits achievable by the use of panelised prefabrication in place of the traditional building systems. Other factors that influence the benefits of prefabrication included (in diminishing order of influence): logistics, type of prefabrication, scale/repeatability, standardisation, contractor’s level of innovation, environmental impact, project leadership, type of procurement, whole of life quality, site conditions, site layout and client’s nature.

Key words: Construction, Cost, New Zealand, Prefabrication, Performance, Productivity, Time.
ETHICAL APPROVAL

Massey University Human Ethics Committee (MUHEC) granted ‘Low Risk Notification’ to this research project on 6 March 2013 (Appendix A).
ACKNOWLEDGEMENTS

I am immensely thankful to so many people who have been part of my PhD journey and made it possible. While I look back to write this acknowledgement, a feeling of gratitude and thankfulness is becoming more overpowering and overwhelming. This thesis would not have been possible without the participation of many wonderful people who contributed their precious time, valuable feedback and expertise to this research project. Without their incredible support I could not have accomplished it.

First, I would like to express my deepest gratitude and appreciation for my research supervisor, Dr. Jasper Mbachu, for his unstinting guidance, knowledgeable advice, unfailing support and motivation. Dr. Mbachu has remained a steadfast source of support and encouragement throughout this journey.

I would like to thank my Co-Supervisor, Dr. Niluka Domingo for her feedback and encouragement. Special thanks goes to Professor Robyn Phipps (Academic Director), Dr. Naseem Ameer Ali (Senior Lecturer), other staff and colleagues from the School of Engineering and Advanced Technology (SEAT) for their kind and continuous support.

I am grateful to the Building Research Association of New Zealand (BRANZ) for providing funding for this research. I feel extremely grateful to Dr. Wayne Sharman and Dr. John Duncan, for showing confidence in my research and providing the funding for this research.

I also wish to express thanks to Massey University Human Ethics Committee (MUHEC) for granting approval to undertake the stakeholder consultation process.
I am grateful to the organizations and individuals who participated in this research. Special thanks goes to Pamela Bell, Rosemary Scofield, John Granville, Kevin Golding, Yvonne Chen, Gary Caulfield and Sam Lomax for their useful feedback that helped to shape this study. I am incredibly thankful to Paul Mathews, Malcolm Fleming, Warren Parke, Freda Wells, Gretchen Woudt and John Walsh who worked like a bridge between members of organizations and me during the data collection process. A heartfelt thanks goes to all the project managers and quantity surveyors who extended their support, dedicated their time and shared the data required for this research.

In the end, I would like to acknowledge the support that my family extended to me. First and foremost, I would like to say thanks to my mother Khalida Gulzar, whose prayers and encouraging words kept me motivated. I am thankful to my brothers Zubair and Hassan who always cheered me up and looked after me.

I am so blessed to have my boys Muhriz, Mohid and Munahid in my life. When they smile at me and give me a hug, my worries are gone and when they cheer, the whole world around me looks so beautiful. I love them for helping to make my life meaningful.

Thank you cannot truly address all that my husband Mohsin has done during the decade of our togetherness. All I will say is I would not be the person I am today if we were not together. Many heartfelt thanks to you Mohsin. And many heartfelt thanks to you all.
DEDICATION

To my amazing parents

Khalida Gulzar & Gulzar Ahmed
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACENZ</td>
<td>Association of Consulting Engineers New Zealand</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BCSPT</td>
<td>Building and Construction Sector Productivity Taskforce</td>
</tr>
<tr>
<td>BRANZ</td>
<td>Building Research Association of New Zealand</td>
</tr>
<tr>
<td>CRC</td>
<td>Cooperative Research Centre</td>
</tr>
<tr>
<td>DBH</td>
<td>Department of Building and Housing</td>
</tr>
<tr>
<td>GFA</td>
<td>Gross Floor Area</td>
</tr>
<tr>
<td>IPENZ</td>
<td>Institute of Professional Engineers New Zealand</td>
</tr>
<tr>
<td>JIT</td>
<td>Just in Time</td>
</tr>
<tr>
<td>LVL</td>
<td>Laminated Veneer Lumber</td>
</tr>
<tr>
<td>NZIA</td>
<td>New Zealand Institute of Architects</td>
</tr>
<tr>
<td>NZIOB</td>
<td>New Zealand Institute of Builders</td>
</tr>
<tr>
<td>NZIQS</td>
<td>New Zealand Institute of Quantity Surveyors</td>
</tr>
<tr>
<td>MBI</td>
<td>Modular Building Institute</td>
</tr>
<tr>
<td>MNOVA</td>
<td>Multivariate Analysis of Variance</td>
</tr>
<tr>
<td>MUHEC</td>
<td>Massey University Human Ethics Committee</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization of Economic Co-operation and Development</td>
</tr>
<tr>
<td>OSM</td>
<td>Off-Site Manufacturing</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>Prefab</td>
<td>Prefabrication</td>
</tr>
<tr>
<td>RMBF</td>
<td>Registered Masters Builders Federation</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>TBS</td>
<td>Traditional Building System</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Table of Contents

STATEMENT OF ORIGINALITY .. III

ABSTRACT OF RESEARCH .. IV

ETHICAL APPROVAL ... V

ACKNOWLEDGEMENTS ... VI

DEDICATION .. VIII

LIST OF ABBREVIATIONS ... IX

CHAPTER 1: INTRODUCTION ... 1

1.1 Background 1

1.2 Statement of Research Problem .. 3

1.3 Research Aim, Questions and Objectives ... 5

1.3.1 Research Aim.. 5

1.3.2 Research Questions... 5

1.3.3 Research Objectives.. 6

1.4 Research Propositions ... 6

1.5 Research Motivation ... 7

1.6 Scope and Limitations ... 8

1.7 Benefits of Research Findings.. 9

1.8 Thesis Structure 9

CHAPTER 2. LITERATURE REVIEW ... 11

2.1 Overview 11

2.2 Construction Productivity ... 11

2.2.1 Productivity in Context ... 11

2.2.2 Concept of the Productivity in the Context of this Study ... 13

2.2.3 Productivity in New Zealand Construction Industry ... 14

2.2.4 Factors Influencing Construction Productivity in New Zealand 15

2.2.5 Improving Construction Productivity 17

2.2.6 Productivity Measurement for this Study ... 18

2.3 Prefabrication Technology ... 19

2.3.1 Understanding Prefabrication .. 19

2.3.2 Types of Prefabrication ... 22

2.3.3 Benefits of Prefabrication ... 26
CHAPTER 3: METHODOLOGY ... 64

3.1 Overview ... 64
3.2 Research Methodology .. 64
3.3 Research Philosophy .. 65
 3.3.1 Positivism/Deductive Approach ... 65
 3.3.2 Interpretivism/Inductive Approach ... 66
 3.3.3 Pragmatism .. 66
 3.3.4 Research Philosophy Adopted in this Study ... 67
3.4 Research Design .. 67
 3.4.1 Exploratory/Qualitative Method .. 68
 3.4.2 Confirmatory/Quantitative Method ... 68
 3.4.3 Mixed Method ... 69
 3.4.4 Research Method Adopted for the Study .. 70
3.5 Research Strategy ... 70
 3.5.1 Survey ... 71
 3.5.2 Experiment ... 71
 3.5.3 Archival Analysis .. 71
 3.5.4 History ... 72
 3.5.5 Case Study ... 72
 3.5.6 Action Research .. 72
 3.5.7 Grounded Theory .. 73
 3.5.8 Ethnography .. 73
 3.5.9 Research Strategies Suitable for this Study ... 73
3.6 Reliability and Validity .. 74
4.4.5 Cost Savings for Apartment Buildings ... 118
4.4.6 Discussion on Cost Saving Results .. 119
4.5 Time Savings ... 120
 4.5.1 Time Savings for Commercial Buildings ... 121
 4.5.2 Time Savings for Community Buildings ... 121
 4.5.3 Time Savings for Educational Projects ... 122
 4.5.4 Time Savings for Houses ... 122
 4.5.5 Time Savings for Apartment Buildings ... 122
 4.5.6 Discussion on Time Saving Results .. 122
4.6 Productivity Improvement .. 123
 4.6.1 Discussion on Productivity Improvement Results .. 124
CHAPTER 5: DATA ANALYSIS, RESULTS AND DISCUSSION - QUESTIONNAIRE SURVEY .. 126
 5.1 Introduction ... 126
 5.2 Survey Responses .. 126
 5.3 Demographic Profiles of Survey Participants ... 128
 5.3.1 Professional Affiliations ... 128
 5.3.2 Position in Organisations .. 129
 5.3.3 Professional Role .. 130
 5.3.4 Professional Experience ... 131
 5.3.5 Implications of Demographic Profile on Research Quality 132
 5.4 Benefits Achievable by the use of Prefabrication (Survey Responses) 132
 5.4.1 Cost Savings ... 133
 5.4.2 Time Savings .. 133
 5.4.3 Productivity Improvement .. 134
 5.4.4 Summary of Cost Savings, Time Savings and Productivity Improvement 134
 5.5 Factor Influencing Prefabrication Benefits .. 135
 5.6 Reducing Number of Influential Factors ... 138
 5.6.1 Scree Plot .. 139
 5.6.2 Total Variance Explained ... 140
 5.6.3 KMO and Bartlett’s Test of Sphericity ... 142
 5.6.4 Rotated Component Matrix ... 143
CHAPTER 6: RELIABILITY AND VALIDITY TESTING ... 145
 6.1 Overview ... 145
 6.2 Research Propositions .. 146
 6.3 Test of Proposition 1 .. 146
 6.3.1 Sub-proposition 1.1 .. 148
 6.3.2 Sub-proposition 1.2 .. 149
 6.3.3 Sub-proposition 1.3 .. 151
 6.3.4 Conclusion on the Tests of Proposition 1 ... 153
 6.4 Test of Proposition 2 .. 155
 6.5 Test of Proposition 3 .. 156
 6.6 Generic Reliability and Validity Tests .. 164
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS .. 170
 7.1 Overview 170
 7.2 Findings in Relation to the Research Objectives ... 170
 7.2.1 Cost Saving, Time Saving and Productivity Improvement: Case Study Results 170
 7.2.2 Factors Influencing Prefabrication Benefits: Survey Results 172
 7.2.3 Reliability and Validity of Research Outcomes ... 174
 7.3 Key Contributions to Knowledge .. 174
 7.4 Benefits of the Research Findings to Key Industry Stakeholders 176
 7.4.1 Benefits and Recommendations to Clients ... 176
 7.4.2 Benefits to Designers .. 176
 7.4.3 Benefits to Contractors ... 177
 7.4.4 Benefits to Prefabrication Suppliers ... 177
 7.4.5 Benefits to Policy Makers and Regulators ... 177
 7.5 Limitations and Recommendations for Future Research ... 178
 7.6 Summary of Key Research Findings ... 179
 7.6.1 Findings in Relation to the First Objective ... 180
 7.6.2 Findings in Relation to the Second Objective... 180
 7.6.3 Findings in Relation to the Third Objective ... 181
 7.7 Framework for Practical Application of Findings in the Industry 181

REFERENCES .. 184

APPENDICES ... 197
 Appendix A: Low Risk Notification ... 198
 Appendix B: Newsletters ... 200
 Appendix B1 (NZIQS Newsletter) ... 200
 Appendix B2 (NZIOB Newsletter) ... 201
 Appendix B3 (NZIA Newsletter) ... 202
 Appendix B4 (ACENZ Newsletter) .. 204
 Appendix C: Survey Package .. 205
 Appendix C1 (Cover Letter) 205
 Appendix C2 (Participant Information Sheet) .. 206
 Appendix C3 (Questionnaire) 207
 Appendix C4 (Request for Research Findings) .. 210
 Appendix C5 (Online Survey) 211
 Appendix D: Cost Saving Analysis ... 223
 Appendix D1 (Cost Saving Analysis: Commercial Buildings) .. 223
 Appendix D2 (Cost Saving Analysis: Community Buildings) ... 226
 Appendix D3 (Cost Saving Analysis: Educational Buildings) ... 229
 Appendix D4 (Cost Saving Analysis: Houses) ... 232
 Appendix D5 (Cost Saving Analysis: Apartment Buildings) ... 235
 Appendix E: Time Saving Analysis ... 238
 Appendix E1 (Time Saving Analysis: Commercial Buildings) .. 238
 Appendix E2 (Time Saving Analysis: Community Buildings) ... 241
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td>Time Saving Analysis: Educational Buildings</td>
<td>244</td>
</tr>
<tr>
<td>E4</td>
<td>Time Saving Analysis: Houses</td>
<td>247</td>
</tr>
<tr>
<td>E5</td>
<td>Time Saving Analysis: Apartment Buildings</td>
<td>251</td>
</tr>
<tr>
<td>F</td>
<td>Productivity Improvement Analysis</td>
<td>254</td>
</tr>
<tr>
<td>F1</td>
<td>Productivity Improvement Analysis: Commercial Buildings</td>
<td>254</td>
</tr>
<tr>
<td>F2</td>
<td>Productivity Improvement Analysis: Community Buildings</td>
<td>257</td>
</tr>
<tr>
<td>F3</td>
<td>Productivity Improvement Analysis: Educational Buildings</td>
<td>260</td>
</tr>
<tr>
<td>F4</td>
<td>Productivity Improvement Analysis: House</td>
<td>263</td>
</tr>
<tr>
<td>F5</td>
<td>Productivity Improvement Analysis: Apartment Buildings</td>
<td>266</td>
</tr>
<tr>
<td>G</td>
<td>Analysis of Survey Responses</td>
<td>269</td>
</tr>
<tr>
<td>G1</td>
<td>Cost Saving Analysis of Survey Responses</td>
<td>269</td>
</tr>
<tr>
<td>G2</td>
<td>Time Saving Analysis of Survey Responses</td>
<td>272</td>
</tr>
<tr>
<td>G3</td>
<td>Productivity Improvement Analysis of Survey Responses</td>
<td>275</td>
</tr>
<tr>
<td>G4</td>
<td>Factors Influencing Prefabrication Benefits: Survey Responses</td>
<td>278</td>
</tr>
<tr>
<td>G5</td>
<td>Percentage Cost Savings: Survey Responses</td>
<td>279</td>
</tr>
<tr>
<td>G6</td>
<td>Percentage Time Savings: Survey Responses</td>
<td>280</td>
</tr>
<tr>
<td>G7</td>
<td>Percentage Productivity Improvement: Survey Responses</td>
<td>281</td>
</tr>
<tr>
<td>H</td>
<td>Comparison of Case Studies and Survey Responses</td>
<td>282</td>
</tr>
<tr>
<td>H1</td>
<td>Cost Saving Analysis</td>
<td>282</td>
</tr>
<tr>
<td>H2</td>
<td>Time Saving Analysis</td>
<td>283</td>
</tr>
<tr>
<td>H3</td>
<td>Productivity Improvement Analysis</td>
<td>284</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1: External and internal constraints of construction productivity [Source: Durdyev (2011)] 16
Figure 2.2: More for less outcomes of prefabrication technology [Source: (Bell and Southcombe, 2012)] 21
Figure 2.3: Drivers of prefabrication technology [Source: (Becker, 2005)] ... 27
Figure 2.4: Construction process comparison between modular prefabrication and traditional construction approach [Source: (MBI, 2010)] ... 30
Figure 2.5: Factors that limit the uptake of prefabrication technology [Source: (Shahzad, 2011)] 42
Figure 3.1: Modelling reliability and validity in research [(Adapted from: Golafshani, 2003] 75
Figure 3.2: Conceptual framework for the study 82
Figure 3.3: Standard building classification [Source: (Statistics NZ, 2015)] 85
Figure 3.4: Aims of data analysis in research 97
Figure 3.5: Framework for choosing appropriate research method and analysis 98
Figure 5.1: Professional affiliation of survey participants ... 128
Figure 5.2: Position of survey participants in their organization ... 129
Figure 5.3: Professional role of survey participants .. . 130
Figure 5.4: Length of professional experience of survey participants ... 131
Figure 5.5: Scree plot of the Eigenvalues against the 17 variables influencing prefabrication benefits ... 140
Figure 6.1: Visual check of fit of average survey cost saving benefits within the confidence intervals of case study average results ... 160
Figure 6.2: Visual check of fit of average survey time saving benefits within the confidence intervals of case study average results ... 161
Figure 6.3: Visual check of fit of average survey productivity improvement benefits within the confidence intervals of case study average results ... 163
Figure 7.1: Decision tree framework for practical application of findings in support of decisions relation to key project targets, building types and locations ... 183
List of Tables

Table 4.1: Summary of case study building projects .. 115
Table 4.2: Cost savings achievable using prefabrication over traditional building systems across
built types and locations... 116
Table 4.3: Time savings achievable using prefabrication over traditional building systems across
built types and locations... 121
Table 4.4: Productivity improvement achievable using prefabrication over traditional systems across
built types and locations... 124
Table 5.2: Analysis of Prefabrication Cost Savings for Educational Buildings (Survey Results) 133
Table 5.3: Summary of Cost Savings, Time Savings and Productivity Improvement Across the
Building Types (Survey Responses) ... 135
Table 5.4: Factors Influencing Prefabrication Added Benefits (Survey Responses) 136
Table 5.5: Total variance explained (SPSS-PCA) .. 141
Table 5.6: KMO Measure and Bartlett's Test of Sphericity ... 143
Table 5.7: Rotated Component Matrix .. 144
Table 6.1: Cost savings achievable using prefabrication over traditional building systems across
built types ... 149
Table 6.2: Cost savings achievable using prefabrication over traditional building systems across
locations ... 149
Table 6.3: Time savings achievable using prefabrication over traditional building systems across
built types ... 150
Table 6.4: Time savings achievable using prefabrication over traditional building systems across
locations using t-test ... 151
Table 6.5: Productivity improvement achievable using prefabrication over traditional building systems
across built types .. 152
Table 6.6: Productivity improvement achievable using prefabrication over traditional building systems
across locations .. 153
Table 6.7: Summary of tests of Proposition 1.. 154
Table 6.8: Comparison of cost savings benefits analysed from case studies and survey feedback 159
Table 6.9: Comparison of time savings benefits analysed from case studies and survey feedback ... 161
Table 6.10: Comparison of productivity improvement benefits analysed from case studies and survey feedback ... 162
Table 6.11: Summary of tests of Proposition 3.. 164
Table 6.12: SPSS Reliability Statistics output for Cronbach's Alpha tests 166
Table 6.13: SPSS ANOVA table output for test of significance of Cronbach's Alpha coefficient result
.. 166
Table 6.14: SPSS Item-Total Statistics showing influence of underlying prefabrication benefit factors
on initial Cronbach's Alpha value.. 168
Table 7.1: Summary of Prefabrication benefits ... 181