Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Synthetic targets as mechanistic probes for the key biosynthetic enzyme, dehydroquinate synthase

A dissertation submitted to
Massey University
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

by

Leonardo Negrón

INSTITUTE OF FUNDAMENTAL SCIENCES
Palmerston North
April 2009
Para mis padres Ruth y Antonio
Acknowledgements

I would like to thank my supervisor Dr. Emily J. Parker for all her help, enthusiasm and encouragement. I am particularly grateful to her for continuing to supervise me despite the distance.

I would also like to thank my co-supervisor Dr. Geoffrey B. Jameson for all his support and assistance. I wish to express a special thank you to Dr. Linley Schofield, Dr. Fiona Cochrane and all the members of Dr. Gill Norris’ lab for the excellent biological support that helped me through many experiments.

Many thanks go to the members of the EJP group and the staff and students of the Institute of Fundamental Sciences.

I wish to express my appreciation to my parents and my siblings for being there for me always and encouraging me to succeed.

Finally, I wish to give my dearest thanks to my partner Dr. Mike Roguski for his unconditional love and support during these arduous few years.
Abstract

Dehydroquinate synthase (DHQS) catalyses the five-step transformation of the seven carbon sugar 3-deoxy-β-arabinopyranose 7-phosphate (DAH7P) to the carbacycle dehydroquinate (DHQ). Multiple studies have described in detail the mechanism of most of the steps carried out by DHQS with the exception of the final cyclisation step. In this study, (3S)-3-fluoro-DAH7P and (3R)-3-fluoro-DAH7P (fluorinated analogues of DAH7P) were produced and assayed across three phylogenetically distinct sources of DHQS in order to determine the role of the enzyme during the cyclisation step of the reaction.

Incubation of (3S)-3-fluoro-DAH7P with DHQS from Escherichia coli, Pyrococcus furiosus, and Kiwifruit resulted in the production of different ratios of (6S)-6-fluoro-DHQ and 1-epi-(6S)-6-fluoro-DHQ for each enzyme. In addition, enzyme catalysis showed a slowing of reaction rates when (3S)-3-fluoro-DAH7P was used, suggesting that the fluorine at C-3 is stabilising the enol pyranose. An increase in the stabilisation of the fluoro-enol pyranose would allow release of this substrate intermediate from the enzyme to compete with the on-going on-enzyme reaction.

The differences in the ratio of products formed suggest that the cyclisation occurs in part on the enzyme and that the epimeric product arises only by an abortive reaction pathway where the (3S)-3-fluoro-enol pyranose is prematurely released and allowed to cyclise free in solution. Once in solution, the (3S)-3-fluoro-enol pyranose could undergo a conformational change in the ring leading to the formation of the epimeric product. Furthermore, it is suspected that the position of fluorine influences the likely transition-state in carbacycle formation leading to the production of the epimeric product.
This research has illuminated the role of the enzyme in guiding the correct stereochemistry of the product and illustrates the important molecular interplay between the enzyme and substrate.
Contents

1. **Background**
 - 1.1 Shikimate pathway ... 1
 - 1.2 Dehydroquinate synthase (DHQS) ... 3
 - 1.3 Structure and function of DHQS ... 4
 - 1.4 Mechanism of DHQS ... 5
 - 1.5 Structural involvement of DHQS in the catalysis of DHQ formation 7
 - 1.6 DHQS from other sources .. 9
 - 1.7 Studies investigating steps one, two, and three catalysed by DHQS 9
 - 1.8 Studies investigating steps four and five of the DHQS reaction mechanism 13
 - 1.9 Further studies involving the role of the enzyme during ring closure 15
 - 1.10 Purpose of the study .. 20
 - 1.11 Thesis objectives ... 22

2. **Expression and purification of DHQS and DHQase from *Escherichia coli* and *Pyrococcus furiosus*. Characterisation of DHQS from *Escherichia coli*, *Pyrococcus furiosus*, and Kiwifruit .. 23
 - 2.1 Introduction ... 23
 - 2.2 Expression of *E. coli* DHQS ... 23
 - 2.3 Purification of *E. coli* DHQS .. 26
 - 2.4 Expression of *P. furiosus* DHQS 28
 - 2.5 *P. furiosus* DHQS purification trials 29
 - 2.6 Expression of *P. furiosus* DHQS using Rosetta-gami B™ cells 30
 - 2.7 *P. furiosus* DHQS lysis trials ... 33
 - 2.8 Final purification of *P. furiosus* DHQS 34
 - 2.9 Expression and purification of *E. coli* DHQase 36
 - 2.10 Expression and purification of *P. furiosus* DHQase 37
 - 2.11 Characterisation of *E. coli* DHQS, *P. furiosus* DHQS, and Kiwifruit DHQS 38
 - 2.12 Metal dependence of *P. furiosus* DHQS and Kiwifruit DHQS 45
 - 2.13 Tagged versus untagged Kiwifruit DHQS experiment 50
 - 2.14 Discussion ... 53
 - 2.15 Summary ... 55

3. **Chemo-enzymatic preparation of DAH7P, (3S)-3-fluoro-DAH7P, and (3R)-3-fluoro-DAH7P** ... 56
 - 3.1 Introduction ... 56
 - 3.2 Preparation of E4P .. 56
 - 3.3 Preparation of (Z)-3-fluoro-PEP and (E)-3-fluoro-PEP 57
 - 3.4 Preparation and isolation of DAH7P 60
 - 3.5 Preparation and isolation of (3S)-3-fluoro-DAH7P and (3R)-3-fluoro-DAH7P 62
Abbreviations

Bn Benzyl
BTP 1,3-bis(tris(hydroxymethyl)amino)propane
DAH7P 3-deoxy-D-arabino-heptulosonate-7-phosphate
DAST diethylaminosulfur trifluoride
DCM dichloromethane
DHQ dehydroquinate
DHQase dehydroquinase
DHQS dehydroquinase synthase
DMAP 4-dimethylaminopyridine
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
DTT dithiothreitol
E4P erythrose-4-phosphate
E extinction coefficient
EDTA ethylenediaminetetraacetic acid disodium salt
ESMS electrospray mass spectrometry
ESPS 5-enolpyruvyl-shikimate-3-phosphate
Et ethyl
G-6-P glucose-6-phosphate
IPTG isopropylthio-β-D-galactoside
K_M Michaelis constant
k_cat catalytic constant
LB Luria Bertani
Me methyl
NAD^+ nicotinamide adenine dinucleotide
NaHMDS sodium hexamethyldisilazide
NBS N'-bromosuccinamide
NMR nuclear magnetic resonance
NOE nuclear Overhauser enhancement
OD_{600} optical density at 600nm
PAGE polyacrylamide gel electrophoresis
PEP phosphoenol pyruvate
Ph phenyl
P_i inorganic phosphate
Ppm parts per million
pTs p-toluenesulfonic acid
Rt room temperature
SDS sodium dodecyl sulfate
TBAF tetra-n-butylammonium fluoride
t-Bu potassium tert-butoxide
THF tetrahydrofuran
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMP</td>
<td>Trimethyl phosphite</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
</tbody>
</table>