Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Effects of Sago Supplementation for Exercise in a Warm-Humid Environment

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy

PhD
In
Health (Sport & Exercise)
at Massey University, Manawatu,
New Zealand.

Mohd Rahimi bin Che Jusoh BSc, MSc.

2016
ABSTRACT

Whilst carbohydrate (CHO) ingestion during exercise with heat stress theoretically has some benefits for performance there is a lack of evidence on the effects of complex-CHO on exercise and recovery in warm-humid (tropical) conditions. The aims of this thesis were to investigate the effects of sago feeding on exercise performance, some physiological parameters, substrate metabolism, and thermoregulatory responses in the condition of exercise with thermal stress. The initial experimental study investigated the reliability of two novel laboratory-based cycling protocols in the presence of significant thermal stress. These protocols would then be employed in the second part of this thesis. The data indicate that the 15 min time-trial pre-loaded with 45 min fixed-intensity (Chapter 5, Study A) and 15 min time-trial pre-loaded with 15 min incremental warm-up (Chapter 5, Study B) were highly reliable when using trained, familiarized males under warm-humid environmental conditions. The second part of this thesis describes experiments which investigated the efficacy of an alternative Malaysian-based CHO, sago, on exercise in conditions which replicate the Malaysian environment (warm and humid).

Chapter 6 describes a study investigating the effect of sago supplementation before and during exercise in a warm-humid environment. The data collected from this study revealed that pre- and during-sago feeding has no differential effects on exercise performance though sago feeding produced a higher glycaemic response during the hour prior to exercise. However, feeding sago before exercise attenuated the rise in core temperature during exercise compared to the control condition, whilst there was a smaller reduction in plasma volume found when consuming sago during steady-state exercise through reduced whole-body sweating, with a concomitant higher plasma sodium concentration. Heart rate was also higher when sago was ingested either before or during exercise compared to control. Then, Chapter 7 further investigated the utility of sago ingestion as a recovery meal on a
subsequent exercise bout in a warm-humid environment. In terms of performance, sago ingestion during short-term recovery seemed to sustain time-trial performance on the second bout of exercise compared to a control condition (no food) where exercise performance degraded. However, no attenuation of physiological, metabolic and thermoregulatory responses was apparent.
ACKNOWLEDGEMENTS

First and foremost, thanks to the Almighty God for giving me strength, courage and opportunity to complete this thesis. I have to thank Universiti Sains Malaysia (USM) and Ministry of Higher Education Malaysia (MoHE) for the scholarship that provided financial support for my family and myself throughout four amazing years overseas in completing my PhD at Massey University, New Zealand.

I would like to express my sincere gratitude and appreciation to my main supervisor Dr Toby Mündel, and co-supervisors, Prof Steve Stannard and Prof Hugh Morton. Without their guidance, advice, and support it would seem impossible to complete this thesis. Thanks also to the Human Performance Laboratory managers, Hayden, Karl and Blake for the equipment guidance and lessons throughout my data collection process in the laboratory. Many thanks to each of participants who were willing to spend their time to contribute to all my studies and without them, there would be no thesis.

Finally, special thanks to my lovely wife Halida and sons Rifqi Harraz and Raaiq Harraz, and my family for their love, support, and encouragement throughout the course of my studies.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... iii
TABLE OF CONTENTS ... iv
LIST OF ABBREVIATIONS .. ix
LIST OF FIGURES ... xii
LIST OF TABLES .. xiv

CHAPTER ONE... 1
1.0 Introduction ... 1
 1.1 Overview of Thesis .. 4

CHAPTER TWO .. 5
2.0 Review of Literature .. 6
 2.1 Ambient Heat Stress and Endurance Performance 9
 2.1.1 Hyperthermic Fatigue .. 11
 2.2 Ambient Heat Stress and Exercise Physiology ... 13
 2.2.1 A Skin Blood Flow Challenge .. 13
 2.2.2 A Thermoregulatory Challenge .. 15
 2.2.3 A Cardiovascular Challenge .. 18
 2.2.4 A Central Nervous System Challenge ... 19
 2.3 Carbohydrate Metabolism during and Supplementation for Exercise with Ambient Heat Stress .. 21
 2.3.1 Substrate Utilisation during Exercise and Heat Stress 21
 2.3.2 Carbohydrate Supplementation during Exercise with Heat Stress 24
 2.4 Starch, Sago and Exercise Supplementation ... 28
 2.4.1 Starch for Exercise .. 28
 2.4.2 Sago for Exercise .. 31
 2.5 Laboratory Tests of Endurance Cycling Performance 33
 2.5.1 Reliability .. 34
 2.5.2 Reliability of Common Cycling Protocols ... 36
 2.6 Summary .. 38
CHAPTER THREE ..40
3.0 Research Aims & Hypotheses..40
3.1 Aims ..40
 3.1.1 General Aim I: ...41
 3.1.2 General Aim II: ..41
3.2 Hypotheses ...42
 3.2.1 Specific Hypotheses: ..42

CHAPTER FOUR ...43
4.0 General Methodology ...43
4.1 Participants ...43
4.2 Preliminary Trials ...44
 4.2.1 Submaximal and Peak Oxygen Uptake (VO₂ peak Test)44
 4.2.2 Familiarization Trial ..45
4.3 Participant’s Dietary and Exercise Control ...45
4.4 Experimental Tests and Procedures ...46
 4.4.1 Experimental Trial Equipment & Measurement ..47
 4.4.1.1 Anthropometric Measurement ..47
 4.4.1.2 Environmental Chamber ...48
 4.4.1.3 Core Temperature Measurement ...48
 4.4.1.4 Skin Temperature Measurement ..49
 4.4.1.5 Expired Gas Analysis ..49
 4.4.1.6 Rating of Perceived Exertion (RPE) ...50
 4.4.2 Blood Sampling ..50
4.5 Sago Supplement Formulation ...51
4.6 Statistical Analysis ..52

CHAPTER FIVE ..53
5.0 Reliability of a Pre-Loaded Cycling Time-Trial in a Warm-Humid Environment ...53
5.1 Introduction ...54
5.2 Methods ..57
 5.2.1 Participants ..57
 5.2.2 Experimental Procedures ..57
 5.2.2.1 Preliminary Trials ...57
 5.2.2.2 Experimental Trial Development ...58
LIST OF ABBREVIATIONS

A

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bpm</td>
<td>Beats per minutes</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF</td>
<td>cerebral blood flow</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>CHO</td>
<td>CHO</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
</tbody>
</table>

D

E

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>E_{max}</td>
<td>Maximal evaporative capacity of the environment</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GE</td>
<td>Gross energy</td>
</tr>
<tr>
<td>g/min</td>
<td>Gram per minute</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic index</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HR_{max}</td>
<td>Maximum heart rate</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICC</td>
<td>Intraclass correlation</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>km</td>
<td>Kilometre</td>
</tr>
<tr>
<td>km/h</td>
<td>Kilometre per hour</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>L/min</td>
<td>Litre per minute</td>
</tr>
<tr>
<td>LF</td>
<td>Linear factor</td>
</tr>
<tr>
<td>LOA</td>
<td>Limit of agreement</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>ml/kg</td>
<td>Millilitre per kilogram</td>
</tr>
<tr>
<td>ml/kg/min</td>
<td>Millilitre per kilogram per minute</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>mmol/L</td>
<td>Millimole per litre</td>
</tr>
<tr>
<td>MCA V<sub>mean</sub></td>
<td>Middle cerebral artery mean blood velocity</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RPE</td>
<td>Rating of perceived exertion</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>
T
- T_{bicep} Skin temperature at the bicep
- T_{calf} Skin temperature at the calf
- T_{chest} Skin temperature at the chest
- T_{core} Core temperature
- T_{SK} Mean skin temperature
- T_{skin} Skin temperature
- T_{thigh} Skin temperature at the thigh
- T_{DF} Total dietary fibre

V
- V_{CO2} Volume of carbon dioxide production
- V_E Minute ventilation
- VO_2 Volume of oxygen uptake
- VO_2max Maximal oxygen uptake
- VO_2peak Peak of oxygen uptake
- $% \; VO_2peak$ Percentage of the peak rate of oxygen uptake

W
- W Watt
- $WBGT$ Wet bulb globe temperature
- W_{max} Watt maximum

X
- \bar{x} mean
LIST OF FIGURES

Figure 2.1: Relationship between ambient temperature and ambient humidity to heat stress index (Brotherhood, 2008). ... 8

Figure 2.2: Factors by which body temperatures may exert their influence on exercise endurance (Bruck & Olschewski, 1987). ...12

Figure 2.3: Heat production and contributions of evaporative, convective and radiative heat loss during exercise at a range of environmental temperatures (Powers & Howley, 2009). ..17

Figure 2.4: Core temperature over a range of air temperatures at three different exercise intensities (Armstrong, 2000). ...17

Figure 2.5: Cardiovascular changes during exercise in the heat (Casa, 1999).18

Figure 2.6: Estimated endurance time during cycle ergometry in relation to work intensity (Sahlin, 1992). ...21

Figure 5.1: Study A; Heart rate, core temperature, O2 uptake and ventilation during 45 min steady-state cycling (—) followed by 15-min time trial (----) for Trial 1 (□) and Trial 2 (●). Values are mean ± SEM. ...63

Figure 5.2: Study B; Heart rate, core temperature, O2 uptake and ventilation during 15-min steady-state cycling (—) followed by 15-min time-trial (----) for Trial 1 (□) and Trial 2 (●). Values are mean ± SEM. ...66

Figure 6.1: A schematic overview of the experimental protocol ..80

Figure 6.2: Total work completed (kJ) during the 15-min time-trial for Control, Pre-Sago and Dur-Sago Trial. Data are expressed as mean ± SE.81

Figure 6.3: Plasma glucose and lactate concentration during rest, steady-state cycling (SS: –) and 15-min time trial (TT: --) for Control, Pre-Sago and Dur-Sago trials. Data are expressed as mean ± SE. * indicates significantly different to Control at that time-point (p < 0.05). ...83

Figure 6.4: Core and mean skin temperature at rest, during steady-state cycling (SS: –) and 15-min time trial (TT: --) for Control, Pre-Sago and Dur-Sago trials. Data are expressed as mean ± SE. * indicates significantly different to Control at that time-point (p < 0.05) ...85

Figure 7.1: A schematic overview of the experimental protocol timeline98

Figure 7.2: Mean total work completed (kJ) during the 15-min time trial for Control and Sago trials before (Ex 1) and after (Ex 2) a 2-h recovery. ‡ indicates significantly different to Ex 1. † indicates significantly different to Con. ...100
Figure 7.3: Plasma glucose and lactate concentrations during recovery (left panels) and Exercise 1 and 2 (right panels) for Control and Sago trials. TT: 15-min time-trial. Arrow indicates Sago ingestion. Data are expressed as mean ± SE. ‡ indicates significantly different to corresponding Exercise 1 time-point. † indicates significantly different to Con at that time-point.

Figure 7.4: Rectal and mean skin temperatures during Exercise 1 and 2 for Control and Sago trials. TT: 15-min time-trial. Arrow indicates Sago ingestion. Data are expressed as mean ± SE.
LIST OF TABLES

Table 4.1: Participants characteristics ...44

Table 4.2: Basic nutrient composition in 100 g of cooked sago52

Table 5.1: Individual performances (A) and measures of test-retest reliability (B) for work completed (kJ) during the 15-min cycling time trial for Study A..........................61

Table 5.2: Individual performances (A) and measures of test-retest reliability (B) for work completed (kJ) during the 15 min cycling time trial for Study B.......................64

Table 6.1: CHO and fat oxidation rates and RER during steady-state exercise.........84

Table 6.2: Plasma sodium and potassium concentrations during exercise. Values are mean ± SD...86

Table 7.1: Carbohydrate and fat oxidation rates (g/min) and RER during warm-up/ steady-state exercise ..103