Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SIGNALIZED FUZZY LOGIC FOR DIAMOND INTERCHANGES INCORPORATING WITH FUZZY RAMP SYSTEM

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

in

Mechatronics

at

Massey University,
Auckland, New Zealand

Cao Van Pham

June 2009
ABSTRACT

New dynamic signal control methods such as fuzzy logic and artificial intelligence developed recently mainly focused on isolated intersection. In this study, a Fuzzy Logic Control for a Diamond Interchange incorporating with Fuzzy Ramp System (FLDI) has been developed. The signalization of two closely spaced intersections in a diamond interchange is a complicated problem that includes both increasing the diamond interchange capacity and reduce delays at the same time. The model comprises of three main modules. The Fuzzy Phase Timing module controls the current phase green time extension, the Phase Selection module select the next phase based on the pre-defined phase sequence or phase logics and the Fuzzy Ramp module determines the cycle time of the ramp meter bases on current traffic volumes and conditions of the interchanges and the motorways. The developed FLDI model has been compared with the traffic actuated simulation with respects to flow rates and the average delays of the vehicles. The model of an actual diamond interchange is described and simulated by using AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban Network) software. Simulation results show the FLDI model outperformed the traffic actuated models with lower system total travel time, average delay and improvements in downstream average speed and average delay.
ACKNOWLEDGEMENTS

Author wishes to express his deepest gratitude and sincerest appreciation to his advisors Prof. Peter Xu, Dr. Fakhrul Alam and Dr. Johan Potgieter for supervision, enthusiastic guidance and continuous encouragement throughout the course of study. Grateful acknowledgment is also extended to Dr. Clara Fang (University of Hartford) for her valuable comments and suggestions.

Gratitude is also expressed to the staffs of Auckland Traffic Management Unit for their help and support. Author is also thankful to his friends Ben Lin and Aeron Yu for assisting in many ways.

Finally author owes a special dept of thanks to his family members who have been behind all his achievements in life.
TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGMENTS .. iii
LIST OF FIGURES ... vii
LIST OF TABLES .. ix
LIST OF ABBREVIATIONS .. x

CHAPTER 1 - INTRODUCTION ... 1
 1.1 Diamond Interchanges Problems ... 1
 1.2 Adaptive Signal Control .. 2
 1.3 Fuzzy Logic Signal Control ... 3
 1.4 Objectives of the Thesis ... 3
 1.5 Scope of the Study .. 3

CHAPTER 2 – LITERATURE REVIEW .. 4
 2.1 Traffic Signal Control for Intersection .. 4
 2.2 Traffic Responsive Ramp Metering .. 6
 2.2.1 Presence Detector ... 6
 2.2.2 Passage Detector/Merge Detector .. 7
 2.2.3 Queue Detector .. 7
 2.2.4 Downstream/Upstream Detector .. 7
 2.3 Ramp Metering Algorithm .. 8
 2.3.1 RWS Algorithm .. 8
 2.3.2 ALINEA Algorithm .. 9
 2.4 Fuzzy Ramp Metering .. 10
 2.5 Fuzzy Logic Signal Control for Intersection ... 11
 2.6 Existence Fuzzy Logic Control for Intersection .. 12
 2.7 Traffic Signal Phasing Selection ... 14
 2.7.1 Protected Right-Turn ... 14
 2.7.2 Permitted Right-Turn ... 14
 2.7.3 Leading Right-Turn ... 15
5.8 Parameters Setup ... 61
5.9 Detector Type .. 62
5.10 Dynamic Scenario Setup ... 62
5.11 Ramp Detectors Setup ... 63
5.12 Interchange Detectors Setup .. 63
5.13 Geometric Information ... 64
5.14 Fuzzy Logic Phase Timing and Phase Control API ... 65
5.15 Counting the Arrival and Queue Vehicles API ... 66
5.16 Performance Measure of Effectiveness ... 67
 5.16.1 Motorway MOE .. 67
 5.16.2 Ramp Delay/Queue MOE .. 67
 5.16.3 System Performance MOE .. 67
5.17 Simulation Pictures ... 68

CHAPTER 6 – RESULTS AND ANALYSIS ... 69
 6.1 Analysis of Scenario 1 and 2 .. 69
 6.2 Analysis of Scenario 3 and 4 ... 73
 6.3 Analysis of Scenario 5 and 6 ... 75
 6.4 FLDI and ADIFM Overall Results Analysis ... 77
 6.5 Summary ... 80

CHAPTER 7 – SENSITIVITY ANALYSIS ... 81
 7.1 Positions of Detectors for On-ramp and Motorway .. 81
 7.2 Minimum Green Time Variations .. 83

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK ... 84
 8.1 Conclusions ... 84
 8.2 Future Work .. 85

REFERENCES ... 86

APPENDICES A-D .. 90
 Appendix A: C++ CODE FOR FUZZY LOGIC DIAMOND INTERCHANGES 90
 Appendix B: C++ CODE FOR FUZZY LOGIC RAMP METERING 107
 Appendix C: COMPARISONS BETWEEN FLDI, ADINM AND ADIFM 115
 Appendix D: TRAFFIC SURVEY PICTURES ... 157
LIST OF FIGURES

Figure 1.1 Geometric layout of a Diamond Interchange ... 1
Figure 2.1 Traffic-responsive ramp metering system (Caltrans, 1991) .. 8
Figure 2.2 A general structure of fuzzy traffic light control system (Tan et al., 1996) 11
Figure 2.3 Phase movement symbols (Austroads, 2002) ... 14
Figure 2.4 Basic Three-Phase Diamond Interchange Ring Structure .. 18
Figure 3.1 Arial view of SH1 Upper Highway Diamond Interchange .. 22
Figure 3.2 Fuzzy sets for the local speed (Low, Medium and High) ... 25
Figure 3.3 Fuzzy sets for the local occupancy (Low, Medium and High) 25
Figure 3.4 Fuzzy sets for the local flow rate (Low, Medium and High) 26
Figure 3.5 Fuzzy set for downstream volume-capacity ratio (High) ... 26
Figure 3.6 Fuzzy set for downstream speed (Low) ... 27
Figure 3.7 Fuzzy set for the check-in occupancy (High) .. 27
Figure 3.8 Fuzzy set for the queue occupancy (High) .. 28
Figure 3.9 Fuzzy set for the Interchange Queue Occupancy (High) .. 28
Figure 3.10 Fuzzy set for metering rates ... 29
Figure 3.11 Fuzzy set for scaled metering rates .. 29
Figure 3.12 Geometric layout of SH1 Upper Highway Diamond Interchange 32
Figure 3.13 Phasing and signal groups for the interchange ... 32
Figure 3.14 Phasing and logic ... 33
Figure 3.15 IDM Phase run report from 6:30-9:01AM on Monday 19/05/2009 (ATMS) 35
Figure 3.16 Phase plan for SH1 Upper Highway Diamond Interchange (peak hour) 36
Figure 3.17 Movements and detectors layout .. 36
Figure 3.18 Phase B Arrival memberships ... 39
Figure 3.19 Phase B Queue memberships ... 40
Figure 3.20 Phase B Fuzzy variable extensions .. 40
Figure 3.21 Phase D Arrival memberships ... 41
Figure 3.22 Phase D Queue memberships ... 42
Figure 3.23 Phase D Fuzzy variable extensions .. 42
Figure 3.24 Phase F Arrival memberships ... 43
Figure 3.25 Phase F Queue memberships ... 44
Figure 3.26 Phase F Fuzzy variable extensions ... 47
Figure 4.1 Diamond Interchanges Detectors Placement Layout 47
Figure 4.2 Framework of Algorithm .. 49
Figure 5.1 AIMSUN 6 environment (Aimsun, 2008) ... 50
Figure 5.2 GETRAM/AISMUN conceptual architecture (Barcelo, 1995) 51
Figure 5.3 Interaction between AIMSUN and API (Aimsun, 2008) 52
Figure 5.4 SH1 Upper Highway Diamond Interchange in AIMSUN 54
Figure 5.5 Turning Information ... 55
Figure 5.6 Flow percentages for sections 612, 615 and 622 56
Figure 5.7 Flow percentages for sections 598, 599, 600, 615, 679 and 683 56
Figure 5.8 Flow percentages for sections 241, 638, 639, 640, 651, 698 and 703 56
Figure 5.9 Flow percentages for sections 659, 660 and 1534 57
Figure 5.10 Flow percentages for sections 231, 629 and 639 57
Figure 5.11 Detector setup for Fuzzy Ramp system in AIMSUN 63
Figure 5.12 Detectors setup for SH1 Upper Highway Diamond Interchange in AIMSUN 64
Figure 5.13 Fuzzy Logic Phase Timing API ... 65
Figure 5.14 Counting Arrival and Queue Vehicles API .. 66
Figure 5.15 State Highway 1 Upper Highway Diamond Interchange simulation pictures 68
Figure 6.1 Scenario 1 downstream average speed (FLDI and ADINM) 70
Figure 6.2 Scenario 1 downstream average delay (FLDI and ADINM) 70
Figure 6.3 Scenario 2 downstream total travel time (FLDI and ADINM) 71
Figure 6.4 Scenario 2 ramp total travel time (FLDI and ADINM) 71
Figure 6.5 Scenario 4 downstream total travel time (FLDI and ADINM) 73
Figure 6.6 Scenario 6 downstream average speed (FLDI and ADINM) 75
Figure 6.7 Percentage of change in system total travel time (ADIFM and FLDI) 77
Figure 6.8 Percentage of change in downstream average speed (ADIFM and FLDI) 78
Figure 6.9 Percentage of change in downstream average delay (ADIFM and FLDI) 79
Figure 7.1 Percentage of change in STTT vs. Positions of Upstream/Downstream detector ... 82
Figure 7.2 Percentage of change in STTT vs. Minimum Green Time 83
LIST OF TABLES

Table 2.1 Common Three-Phase Signal Plan (Messer et al., 1977) .. 19
Table 2.2 Common Four-Phase Signal Plan (Messer et al., 1977) .. 20
Table 3.1 Terms of fuzzy sets of inputs and outputs ... 24
Table 3.2 Rule base for Fuzzy Ramp Metering .. 30
Table 3.3 Fuzzy rules and its weighting for Phase B .. 37
Table 3.4 Fuzzy Green Time Extension for Phase D, B and F .. 45
Table 5.1 Traffic demand data for Scenario 1 (3348 vehicles per hour) ... 59
Table 5.2 Traffic demand data for Scenario 2 (3752 vehicles per hour) .. 59
Table 5.3 Traffic demand data for Scenario 3 (4592 vehicles per hour) .. 59
Table 5.4 Traffic demand data for Scenario 4 (6272 vehicles per hour) .. 60
Table 5.5 Traffic demand data for Scenario 5 (7952 vehicles per hour) .. 60
Table 5.6 Traffic demand data for Scenario 6 (8783 vehicles per hour) .. 60
Table 5.7 Measure of effectiveness between models (3348 vehicles/hour – Scenario 1) 72
Table 5.8 Measure of effectiveness between models (3752 vehicles/hour – Scenario 2) 72
Table 5.9 Measure of effectiveness between models (4592 vehicles/hour – Scenario 3) 74
Table 5.10 Measure of effectiveness between models (6272 vehicles/hour – Scenario 4) 74
Table 5.11 Measure of effectiveness between models (7952 vehicles/hour – Scenario 5) 76
Table 5.12 Measure of effectiveness between models (8783 vehicles/hour – Scenario 6) 76
Table 7.1 Percentage of change in STTT vs. Positions of Upstream/Downstream detector 82
Table 7.2 Minimum Green Time vs. Percentage of change in STTT .. 83
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIM</td>
<td>Actuated Diamond Interchange Control with No Ramp Metering</td>
</tr>
<tr>
<td>ADIFM</td>
<td>Actuated Diamond Interchange Control with Fuzzy Ramp Metering</td>
</tr>
<tr>
<td>AIMSUN</td>
<td>Advanced Interactive Microscopic Simulator for Urban and Non-Urban Network</td>
</tr>
<tr>
<td>DAD</td>
<td>Downstream Average Delay</td>
</tr>
<tr>
<td>DAS</td>
<td>Downstream Average Speed</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy Logic Control</td>
</tr>
<tr>
<td>FLDI</td>
<td>Fuzzy Logic Diamond Interchange Control</td>
</tr>
<tr>
<td>HOV</td>
<td>High Occupancy Vehicle</td>
</tr>
<tr>
<td>SH1</td>
<td>State Highway 1</td>
</tr>
<tr>
<td>MF</td>
<td>Membership function</td>
</tr>
<tr>
<td>MOE</td>
<td>Measures of Effectiveness</td>
</tr>
<tr>
<td>MOTORWAY</td>
<td>Freeway (US)</td>
</tr>
<tr>
<td>NZMOT</td>
<td>New Zealand Ministry of Transportation</td>
</tr>
<tr>
<td>STTT</td>
<td>System Total Travel Time</td>
</tr>
<tr>
<td>TFL</td>
<td>Traffic Light</td>
</tr>
<tr>
<td>TNZ</td>
<td>Transit New Zealand (is now part of New Zealand Transport Agency)</td>
</tr>
<tr>
<td>TTT</td>
<td>Total Travel Time</td>
</tr>
</tbody>
</table>

x