Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effect of synthetic and bovine milk conjugated linoleic acid (CLA) on immune function

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Nutrition Science at Massey University, New Zealand

HUI ZHAO

1999
Effect of synthetic and bovine milk conjugated linoleic acid (CLA) on immune function

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Nutrition Science at Massey University, New Zealand

HUI ZHAO

1999
ABSTRACT

CLA is a collective name for a mixture of positional and geometrical isomers of linoleic acid (c-9, c-12-octadecadienoic acid) which possess conjugated double bonds. CLA occurs in a variety of foods, but is present at higher concentrations in products from ruminants. Milk fat is the richest natural source of CLA. The objective of this research was to examine the immunomodulatory properties of CLA (both synthetic and natural CLA derived from bovine milk fat). Two experiments were conducted at the Milk and Health Research Centre, Massey University, Palmerston North, New Zealand.

The aim of the first experiment was to investigate the dose effect of different concentrations of synthetic CLA (Tonalin) on immune function. Mice were fed either skim milk powder based diet or the same diet supplemented with 0.1, 0.25, 0.5, 1.0 or 2.0% synthetic CLA (Tonalin) by weight. Animals were immunised orally with a mixture of polio vaccine in sodium bicarbonate (25 µl) and subcutaneously with Fluvax and Tetanus toxoid vaccine on days 7 and 21. After 4 weeks feeding, mice were euthanased by isoflurane overdose. Various immune parameters were measured and the results showed that synthetic CLA (Tonalin) enhanced a range of immune functions. Synthetic CLA stimulated PHA induced T lymphocyte proliferation at 0.25, 0.5 and 1.0% as compared with the control group (p < 0.05). Synthetic CLA enhanced macrophage phagocytosis in a dose dependent manner. Synthetic CLA enhanced antibody responses (mucosal and systemic) to vaccines (polio vaccine, Fluvax and Tetanus toxoid). Natural killer cell activity was significantly enhanced in mice fed 0.25 and 0.5% CLA. In general, 0.25% CLA was regarded as the best CLA level which achieved optimal immunoregulating effects.

The aim of the second experiment was to examine the effect of natural CLA derived from milk fat on immune responses in mice. Mice were fed a skim milk powder (SMP) based diet. The control diet was skim milk powder only, without any CLA or milk fat supplementation. The dietary treatments were: ordinary milk fat, fractionated milk fat (1st stage), 0.2% synthetic CLA (Tonalin) and CLA enriched milk fat. Animals were fed these
diets for 28 days. Mice were immunised orally with a mixture of polio vaccine/ovalbumin/cholera toxin in sodium bicarbonate on days 7, 14 and 21 and subcutaneously with Fluvax and ADT (Diptheria and Tetanus toxoid vaccine) on days 7 and 21. Natural CLA was found to stimulate PHA and Con A induced T lymphocyte blastogenesis. Supplementation with natural CLA also led to increased antibody responses to vaccines and increased CD25+ populations in peripheral blood in mice. Natural CLA also enhanced macrophage phagocytosis. Synthetic CLA enhanced a range of immune functions which is consistent with the results in the first experiment.

It is noted that although the CLA content is low in milk fat, the natural CLA derived from milk fat expressed potent effects in enhancing the growth of immune cells and promoting a range of immune functions in mice.

Key words: conjugated linoleic acid (CLA), lymphocyte, macrophage, immunity, milk fat
ACKNOWLEDGEMENTS

My sincere thanks go to my chief supervisor, Prof. H. S. Gill, for his great supervision, guidance and patience through this study, and to my co-supervisor, Dr. K. J. Rutherford, for her enthusiastic encouragement, constructive suggestions and critical comments on papers, which helped make this study productive.

My special thanks are extended to the following people who provided technical assistance or help in various ways for the project: D. Johnson, A. Broomfield, S. Blackburn, S. Robinson, K. Kennedy, L. Fray and all staff at the Milk and Health Research Centre; to the staff in the small animal production unit (SAMP), Massey University; and to K.E. Kiston, H.E. McClean, Institute of Food, Nutrition and Human Health (IFNHH), Massey University.

My special thanks to Dr. Q. Shu for his valuable help and comments on statistical analysis and other topics, and to Dr. F. Cross for checking and correcting English for my thesis.

Thanks also to Dr. Alastair MacGibbon, Dairy Research Institute, New Zealand, for supplying the milk derived CLA and other milk fats.

I am also very appreciative for the financial assistance I received in the form of a DNHP scholarship during the course of my study.

Many thanks to all my fellow postgraduate students at the Milk and Health Research Centre, Massey University and all my friends in Palmerston North, for their friendship and help during my study at Massey University.

Finally, my immense gratitude to my parents and parents-in-law for their encouragement and support of my study in a number of ways, and to my wife, Sa Chen, for her love,
patience, support and help, and to my beloved son, Rex L. Zhao, who always brings our family cheer and happiness.
1. GENERAL INTRODUCTION

2. LITERATURE REVIEW

2.1 INTRODUCTION

2.2 DIETARY FATTY ACIDS AND HEALTH EFFECTS

2.2.1 Dietary fatty acids and cardiovascular disease

2.2.2 Dietary fatty acids and cancer

2.2.3 Dietary fatty acids and the immune system

2.2.3.1 The immune system

2.2.3.2 Dietary fat and lymphocyte functions

2.2.3.2.1 Lymphocyte proliferation

2.2.3.2.2 Cytotoxic T lymphocyte activity

2.2.3.3 Natural killer cell activity

2.2.3.4 Cytokines production

2.2.3.4.1 Macrophage and monocyte-derived cytokines

2.2.3.4.2 Lymphocyte-derived cytokines

2.2.3.5 Antigen presentation

2.2.3.6 In vivo measures of cell-mediated immunity

2.2.3.6.1 In vivo response to endotoxin and cytokines

2.2.3.6.2 Delayed-type hypersensitivity

2.3 MILK FAT COMPONENT

2.3.1 Sphingomyelin and metabolites
2.3.2 Butyric acid
2.3.3 Ether lipids
2.3.4 The fat soluble vitamins
2.3.5 Conjugated linoleic acid (CLA)
 2.3.5.1 Introduction
 2.3.5.2 Tissue distribution, occurrence and sources of CLA
 2.3.5.2.1 CLA in dairy products
 2.3.5.2.2 CLA in non-dairy foods
 2.3.5.3 Health benefits of CLA
 2.3.5.3.1 CLA and immune function
 2.3.5.3.2 CLA and cancer
 2.3.5.3.3 CLA and atherosclerosis
 2.3.5.3.4 CLA on growth and development
 2.3.5.3.5 CLA and body fat regulation
 2.3.5.3.6 CLA and bone metabolism
 2.3.5.4 CLA and human studies
 2.3.5.5 Mechanism of action of CLA
 2.3.5.6 CLA, dairy products and the future
2.4 SUMMARY

3. EXPERIMENT ONE

3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
 3.2.1 Animals
 3.2.2 Diets
 3.2.3 Vaccines (Antigens)
 3.2.4 Preparation of serum
 3.2.5 Collection of intestinal contents
 3.2.6 Preparation of spleen lymphocytes
 3.2.7 The cell proliferation assay
 3.2.8 Cytokine production assay
3.2.9 The immunophenotyping assay
3.2.10 The ELISA antibody assay
3.2.11 Preparation of peritoneal macrophages
3.2.12 Phagocytosis by peritoneal macrophages
3.2.13 Phagocytosis by peripheral blood leukocytes
3.2.14 Monokine production assay
3.2.15 Respiratory burst assay
3.2.16 Nitric oxide production assay
3.2.17 NK cell activity assay
3.2.18 Interferon-γ assay
3.2.19 Interleukin 4 assay

3.3 EXPERIMENTAL DESIGN

3.4 STATISTICAL ANALYSIS

3.5 RESULT
3.5.1 Body weight and feed intake
3.5.2 Effects of CLA on spleen weight
3.5.3 The phagocytic activity of peritoneal macrophages
3.5.4 The phagocytic activity of peripheral blood leukocytes
3.5.5 Respiratory burst
3.5.6 Nitric oxide production
3.5.7 NK cell activity-cytotoxicity detection
3.5.8 Mucosal and systemic antibody responses to antigens/vaccines
3.5.9 Total leukocyte and total lymphocyte levels in peripheral blood
3.5.10 Expression of peripheral blood leukocyte cell surface markers
3.5.11 Cell proliferative response to T and B cell mitogens
3.5.12 Interferon-γ and interleukin-4 production

3.6 DISCUSSION

4. EXPERIMENT TWO

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS
4.2.1 Animals 79
4.2.2 Diets 79
4.2.3 Vaccines 81
4.2.4 Methods 81
4.3 EXPERIMENTAL DESIGN 82
4.4 STATISTICAL ANALYSIS 83
4.5 RESULT 84
 4.5.1 Body weight and food intake 84
 4.5.2 Effects of CLA on spleen weight and spleen/body weight ratio 84
 4.5.3 The phagocytic activity of peritoneal macrophages 85
 4.5.4 The phagocytic activity of peripheral blood leukocytes 86
 4.5.5 Respiratory burst 87
 4.5.6 Nitric oxide production 88
 4.5.7 NK cell activity 88
 4.5.8 Mucosal and serum antibody responses to antigens/vaccines 89
 4.5.8.1 Mucosal antibody responses to CT, OV and Polio vaccine 89
 4.5.8.2 Serum antibody responses to CT and OV 91
 4.5.8.3 Serum antibody responses to Fluvax, Diphtheria and Tet Tox 92
 4.5.9 Total leukocytes and total lymphocytes in peripheral blood 94
 4.5.10 Expression of peripheral blood leukocyte cell surface markers 95
 4.5.11 Cell proliferative responses to T and B cell mitogens 97
 4.5.11.1 Cell proliferative responses to PHA 97
 4.5.11.2 Proliferative responses to Con A 98
 4.5.11.3 Proliferative responses to LPS 98
 4.5.12 Interferon-γ and interleukin-4 production 99
4.6 DISCUSSION 100

5. GENERAL DISCUSSION AND CONCLUSION 106

6. REFERENCE 114
LIST OF TABLES

Chapter 2
Table 2-1 Contrasting properties of natural and acquired immunity 12

Chapter 3
Table 3-1 Diet composition (% diet weight) 42
Table 3-2 Fatty acid composition (% fat) of Tonalin 43
Table 3-3 Effect of consumption of diets containing synthetic CLA (Tonalin) on growth performance of mice 56
Table 3-4 Effect of dietary CLA (Tonalin) on spleen weight and spleen/body weight ratio 57
Table 3-5 Effect of synthetic CLA on respiratory burst 59
Table 3-6 Effect of synthetic CLA on total lymphocytes and total leukocytes levels in peripheral blood 63
Table 3-7 Effect of synthetic CLA on the expression of surface markers on peripheral blood leukocytes 64
Table 3-8 Effect of synthetic CLA on interferon-γ and interleukin-4 production 68

Chapter 4
Table 4-1 Diet composition (% diet weight) 80
Table 4-2 Fatty acid composition (% fat) of milk fat and Tonalin 80
Table 4-3 CLA concentration in each diet (% diet weight) 81
Table 4-4 Vaccination schedule 82
Table 4-5 Effect of consumption of diets containing natural and synthetic CLA on growth performance of mice 84
Table 4-6 Effect of natural and synthetic CLA on spleen weight and spleen/body weight ratio 85
Table 4-7 Effect of natural and synthetic CLA on respiratory burst 87
Table 4-8 Effect of natural and synthetic CLA on total lymphocytes and total leukocytes 95
Table 4-9 Effect of natural CLA and synthetic CLA on the expression of surface markers on peripheral blood leukocytes

Table 4-10 Effect of natural and synthetic CLA on interferon-γ and interleukin-4 production
LIST OF FIGURES

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Structural formulas for omega-6 (linoleic acid, 18:2-n6) and omega-3 (alpha-linolenic acid, 18:3 n-3) fatty acid</td>
<td>5</td>
</tr>
<tr>
<td>2-2</td>
<td>Essential fatty acid metabolism desaturation and elongation of ω6 and ω3</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>Structures of the cis-9, cis-12 linoleic acid and cis-9, trans-11 CLA isomers</td>
<td>26</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Effect of dietary CLA on phagocytosis (peritoneal Macrophages)</td>
<td>58</td>
</tr>
<tr>
<td>3-2</td>
<td>Effect of dietary CLA on phagocytosis (peripheral blood leukocytes)</td>
<td>59</td>
</tr>
<tr>
<td>3-3</td>
<td>Effect of dietary CLA on nitric oxide production</td>
<td>60</td>
</tr>
<tr>
<td>3-4</td>
<td>Effect of dietary CLA on NK cell activity</td>
<td>61</td>
</tr>
<tr>
<td>3-5</td>
<td>Serum antibody responses to Tetanus toxoid</td>
<td>62</td>
</tr>
<tr>
<td>3-6</td>
<td>Mucosal antibody responses to Polio vaccine</td>
<td>62</td>
</tr>
<tr>
<td>3-7</td>
<td>Serum antibody responses to Fluvax vaccine</td>
<td>63</td>
</tr>
<tr>
<td>3-8</td>
<td>Effect of CLA on splenic lymphocyte proliferation induced by PHA (phytohemaglutinin)</td>
<td>66</td>
</tr>
<tr>
<td>3-9</td>
<td>Effect of CLA on splenic lymphocyte proliferation induced by Con A (concanavalin A)</td>
<td>66</td>
</tr>
<tr>
<td>3-10</td>
<td>Effect of CLA on splenic lymphocyte proliferation induced by LPS (E. coli lipopolysaccharide)</td>
<td>67</td>
</tr>
<tr>
<td>3-11</td>
<td>Proposed mechanism of action of CLA in regulating eicosanoid synthesis. HEPETE, hydroxyperoxyeicosatetraenoic acid; HETE, hydroxyeicosatetraenoic acid</td>
<td>75</td>
</tr>
</tbody>
</table>
Chapter 4

Figure 4-1 Effect of milk fat derived CLA on phagocytosis (peritoneal macrophages) 86
Figure 4-2 Effect of milk fat derived CLA on phagocytosis (peripheral blood leukocytes) 87
Figure 4-3 Effect of milk fat derived CLA on nitric oxide production 88
Figure 4-4 Effect of milk fat derived CLA on NK cell activity 89
Figure 4-5 Mucosal antibody responses to cholera toxin (CT) 90
Figure 4-6 Mucosal antibody responses to ovalbumin (OV) 90
Figure 4-7 Mucosal antibody responses to Polio vaccine 91
Figure 4-8 Serum antibody responses to Cholera toxin (CT) 92
Figure 4-9 Serum antibody responses to ovalbumin (OV) 92
Figure 4-10 Serum antibody responses to Fluvax 93
Figure 4-11 Serum antibody responses to Diptheria 94
Figure 4-12 Serum antibody responses to Tetanus toxoid 94
Figure 4-13 Effect of milk fat derived CLA on splenic lymphocyte proliferation induced by PHA (phytohemagglutinin) 97
Figure 4-14 Effect of milk fat derived CLA on splenic lymphocyte proliferation induced by Con A (concanavalin A) 98
Figure 4-15 Effect of milk fat derived CLA on splenic lymphocyte proliferation induced by LPS (E. coli lipopolysaccharide) 99
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster differentiation</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated linoleic acid</td>
</tr>
<tr>
<td>Con A</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>CT</td>
<td>Cholera toxin</td>
</tr>
<tr>
<td>Ig A</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>Ig G</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IL-4</td>
<td>Interleukin-4</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>NK cell</td>
<td>Natural killer cell</td>
</tr>
<tr>
<td>OV</td>
<td>Ovalbumin</td>
</tr>
<tr>
<td>Polio</td>
<td>Poliomyelitis</td>
</tr>
<tr>
<td>PHA</td>
<td>Phytohemagglutinin</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>Tet Tox</td>
<td>Tetanus toxoid</td>
</tr>
<tr>
<td>Th cell</td>
<td>T helper cell</td>
</tr>
<tr>
<td>Ts cell</td>
<td>T suppressor cell</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
</tbody>
</table>