An Analytical Approach to Modelling Epidemics on Networks.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Applied Mathematics

at Massey University, Albany,
New Zealand.

Karen McCulloch

December 21, 2016
Abstract

A significant amount of effort has been directed at understanding how the structure of a contact network can impact the spread of an infection through a population. This thesis is focused on obtaining tractable analytic results to aid our understanding of how infections spread through contact networks and to contribute to the existing body of research that is aimed at determining exact epidemic results on finite networks. We use SIR (Susceptible-Infected-Recovered) and SIS (Susceptible-Infected-Susceptible) models to investigate the impact network topology has on the spread of an infection through a population.

For an SIR model, the probability mass functions of the final epidemic size are derived for eight small networks of different topological structure. Results from the small networks are used to illustrate how it is possible to describe how an infection spreads through a larger network, namely a line of triangles network. The key here is to correctly decompose the larger network into an appropriate assemblage of small networks so that the results are exact.

We use Markov Chain theory to derive results for an SIS model on eight small networks such as the expected time to absorption, the expected number of times each individual is infected and the cumulative incidence of the epidemic. An algorithm to derive the transition matrix for any small network structure is presented, from which, in theory, all other results for the SIS model can be obtained using Markov Chain theory. In theory, this algorithm is applicable to networks of any size, however in practice it is too computationally intensive to be practical for larger networks than those presented in this thesis.

We give examples for both types of model and illustrate how to parameterise the small networks to investigate the spread of influenza, measles, rabies and chlamydia through a small community or population.
Acknowledgements

I would like to thank my supervisor, Professor Mick Roberts; for his guidance, support and patience throughout this project; without which this research would not have been possible.

I would also like to thank my co-supervisor, Associate Professor Carlo Laing, for his guidance, support and patience throughout this project.

Thirdly, I would like to thank all my colleagues whom I have met and had inspirational discussions with over the past few years. In particular, I would like to thank Dr Roslyn Hickson for her help with the Gillespie algorithm code.

Lastly, I would like to thank my partner, family and friends who have supported me throughout this endeavour; for that I am very grateful.

A paper based on the work presented in Chapter 2 and Appendix A of this thesis has been published in the following.
Contents

1 Introduction

1.1 Network models for the spread of infections 14
1.2 Mathematical Preliminaries .. 18
 1.2.1 The Exponential Distribution .. 18
 1.2.2 Poisson Processes ... 19
 1.2.3 Discrete Time Markov Chains ... 21
 1.2.4 Continuous Time Markov Chains .. 22
1.3 Overview ... 26

I SIR Model

2 SIR epidemics on small networks ... 29
 2.1 Triangle Network ... 32
 2.1.1 Catalogue of transition probabilities for the triangle network 33
 2.1.2 Progression of infection over time 34
 2.2 Lollipop Network ... 38
 2.2.1 Catalogue of transition probabilities 38
 2.2.2 Progression of infection over time 42
 2.3 Epidemics on networks of three or four nodes 47
 2.3.1 Stochastic Model .. 47
 2.3.2 Results .. 47
 2.4 Discussion ... 59

3 An SIR model on a Line of Triangles Network. 61
 3.1 Line of Triangles with $N = 6$ nodes ... 62
 3.1.1 Probability mass function for the final epidemic size 62
 3.1.2 The probability that node i ever gets infected in a LoT(6) network ... 66
 3.1.3 Paths of infection from node a to f 71
List of Figures

2.1 Network diagrams in order of increasing complexity. 30
2.2 Example of grouping together topologically equivalent states for networks of size $N = 3$. ... 31
2.3 Transition diagram for the triangle network with $N = 3$ nodes. 32
2.4 Progression of infection over time for an SIR model on a triangle network. ... 37
2.5 Transition diagram for the lollipop network with $N = 4$ nodes. 39
2.6 Progression of infection over time for an SIR model on a lollipop network. .. 46
2.7 Expected final size functions of R for all networks of size $N = 3$. 48
2.8 Expected final size functions of R for all networks of size $N = 4$. 50
2.9 PMFs for the triangle and line networks with $N = 3$. 52
2.10 PMFs for the complete and square networks with $N = 4$. 53
2.11 PMFs for the star network with $N = 4$. 54
2.12 PMFs for the toast network with $N = 4$. 55
2.13 PMFs for the line network with $N = 4$. 56
2.14 PMFs for the lollipop network with $N = 4$. 57
3.1 Schematic of a line of triangles network. 61
3.2 Initial conditions for the Line of Triangles Network with $N = 6$ nodes. 62
3.3 Expected final size functions of R for the LoT(6) network with $I_0 = a$ and $I_0 = c$. .. 63
3.4 Final size PMF for the LoT(6) network. 65
3.5 Probability each node is ever infected during an epidemic on the LoT(6) network. .. 68
3.6 Infection paths for the LoT(6) network. 72
3.7 Probability of infection spreading along a given pathway in the LoT(6) network. ... 76
3.8 Probability of infection ending at each node in the LoT(6) and LoT(9) networks. ... 79
3.9 Probability the infection only spreads to the left or right and ends at each node for LoT(6) and LoT(9) .. 86
3.10 Probability the infection only spreads in both directions and ends at each node for LoT(6) and LoT(9) .. 87
3.11 Probability the infection reaches ω_N and the probability of obtaining a final size equal to N for a LoT network with $I_0 = a$. Analytic results are compared to stochastic results derived using the Gillespie algorithm .. 90
3.12 Types of nodes in a line of triangles network with $I_0 = a$. 91
3.13 Probability the infection ends at a given node starting with $I_0 = a$ in a LoT network .. 93
3.14 Probability the infection reaches ω_N and the probability of obtaining a final size equal to N for a LoT network with $I_0 = c$. 95
3.15 Types of nodes in a line of triangles network with $I_0 = c$. 96
3.16 Probability the infection spreads to node a and then ends at a given node starting with $I_0 = c$ in a LoT network 98
3.17 PMFs for the final epidemic size of a LoT(21) network with $I_0 = a$... 102
3.18 PMFs for the final epidemic size of a LoT(21) network with $I_0 = c$. ... 111
3.19 Absolute value of the difference between analytic and stochastic results for the probability infection ends at each node in a LoT network. 112
3.20 Convergence of the difference between analytic and stochastic results for the probability k apex nodes were infected given that the infection ended at node j in the LoT network with $N = 21$ nodes 113
4.1 PMFs for the spread of influenza through the triangle and line networks with $N = 3$. ... 123
4.2 Probability mass functions for the spread of influenza through the complete and square networks with $N = 4$. 124
4.3 PMFs for the spread of influenza through the star network with $N = 4$. 125
4.4 PMFs for the spread of influenza through the toast network with $N = 4$. 126
4.5 PMFs for the spread of influenza through the line network with $N = 4$. 127
4.6 PMFs for the spread of influenza through the lollipop network with $N = 4$. ... 128
5.1 Network diagrams in order of increasing complexity. 133
5.2 Transition diagram of an SIS model on a triangle network. 135
5.3 Transition diagram for an SIS model on a lollipop network. 146
5.4 Convergence of the variance of log(S/A) for the Triangle Network with initial state ISS (where node a is infectious and nodes b and c are susceptible) .. 152
5.5 Convergence of the variance of log(S/A) for the Triangle Network with initial state ISS ... 153
5.6 Expected number of times each node is infected during the epidemic for the triangle and line networks with $N = 3$ nodes. 155
5.7 Expected number of times each node is infected during the epidemic for the complete and square networks with $N = 4$ nodes. 156
5.8 Expected number of times each node is infected during the epidemic for the star network with $N = 4$ nodes. 157
5.9 Expected number of times each node is infected during the epidemic for the toast network with $N = 4$ nodes. 158
5.10 Expected number of times each node is infected during the epidemic for the line network with $N = 4$ nodes. 159
5.11 Expected number of times each node is infected during the epidemic for the lollipop network with $N = 4$ nodes. 160
6.1 Schematic of a line of triangles network .. 163
6.2 Expected number of times each node is infected during the epidemic for the LoT(6) ... 168
6.3 Expected number of times each node is infected during the epidemic for the LoT(9) ... 169
7.1 Expected number of times each node is infected during the epidemic for the triangle and line networks with $N = 3$ nodes. 179
7.2 Expected number of times each node is infected during the epidemic for the complete and square networks with $N = 4$ nodes. 180
7.3 Expected number of times each node is infected during the epidemic for the star network with $N = 4$ nodes. 181
7.4 Expected number of times each node is infected during the epidemic for the toast network with $N = 4$ nodes. 182
7.5 Expected number of times each node is infected during the epidemic for the line network with $N = 4$ nodes. 183
7.6 Expected number of times each node is infected during the epidemic for the lollipop network with $N = 4$ nodes. 184
A.1 Transition diagram for the line network with $N = 3$ nodes. 197
A.2 Numerical solution of the system of differential equations for an SIR model on a line network with $N = 3$ nodes. 202
A.3 Transition diagram for the complete network with $N = 4$ nodes. . . 205
A.4 Numerical solution of the system of differential equations for an SIR model on a complete network with $N = 4$ nodes. 208
A.5 Transition diagram for the square network with $N = 4$ nodes. 210
A.6 Numerical solution of the system of differential equations for an SIR model on a square network with $N = 4$ nodes. 214
A.7 Transition diagram for the star network with $N = 4$ nodes. 216
A.8 Numerical solution of the system of differential equations for an SIR model on a star network with $N = 4$ nodes. 221
A.9 Transition diagram for a toast network with $N = 4$ nodes. 223
A.10 Numerical solution of the system of differential equations for an SIR model on a toast network with $N = 4$ nodes. 228
A.11 Transition diagram for a line network with $N = 4$ nodes. 230
A.12 Numerical solution of the system of differential equations for an SIR model on a line network with $N = 4$ nodes. 236

B.1 Convergence plots for the probability the infection reaches N and the probability the final size equals N in a LoT(21) network. 240
B.2 Absolute value of the difference between analytic and stochastic results for the probability infection ends at each node in a LoT network. 241

C.1 Transition state diagram for the SIS model on a line network of $N = 3$ nodes. 242
C.2 Transition state diagram for the SIS model on a complete network of $N = 4$ nodes. .. 250
C.3 Transition state diagram for the SIS model on a square network of $N = 4$ nodes. 254
C.4 Transition state diagram for the SIS model on a star network of $N = 4$ nodes. .. 260
C.5 Transition state diagram for the SIS model on a toast network of $N = 4$ nodes. .. 266
C.6 Transition state diagram for the SIS model on a line network of $N = 4$ nodes. .. 270

D.1 Schematic of the initial state SSI for the Line Network with $N = 3$ nodes. .. 273
D.2 Convergence of the variance of log(S/A) for the Line Network with initial state SSI .. 274
D.3 Convergence of the variance of log(S/A) for the Line Network with initial state SSI .. 275
D.4 Schematic of the initial state ISSS for the Complete Network with $N = 4$ nodes. ... 276
D.5 Convergence of the variance of log(S/A) for the Complete Network with initial state ISSS 277
D.6 Convergence of the variance of log(S/A) for the Complete Network with initial state ISSS 278
D.7 Schematic of the initial state where node a is infectious for the Line of Triangles Network with $N = 6$ nodes. 279
D.8 Convergence of the variance of log(S/A) for the Line of Triangles Network with initial state ISSSSS 279
List of Tables

2.1 Triangle network final size PMFs 35
2.2 Lollipop network final size PMFs 45
2.3 Expressions for the Expected Final Size ($\mathbb{E}[\text{Final Size}]$) of an
SIR epidemic starting with one infectious node. 49
2.4 Intersections of Expected Final Size expressions. 50
2.5 Expected Final Size for an SIR epidemic and network clustering coefficients 58

3.1 Final size probability mass functions for LoT(6) with $I_0 = a$
and $I_0 = c$. ... 64
3.2 Probability each node ever gets infected in the LoT(6) net-
work. ... 67

4.1 Comparison of R_0 for SIR models on heterogeneous populations. .. 117
4.2 Next Generation Matrices and R_0 for small networks. . . . 120
4.3 R_0 estimates for influenza. 122
4.4 Expected Final Size (EFS) for influenza on small networks . 122

5.1 Cumulative Incidence (C.I) and Expected Time to Absorp-
tion, $E[\text{Time to Abs}]$, for an SIS epidemic on small networks.154

6.1 Cumulative Incidence (C.I) and Expected Time to Absorp-
tion for an SIS epidemic on a LoT network 166

7.1 R_0 for rabies and chlamydia trachomatis on small networks. 177
7.2 Cumulative Incidence (C.I) and Expected Time to Absorp-
tion, $E[\text{Time to Abs}]$, for an SIS epidemic on small networks.178

A.1 Final Size PMFs .. 200
A.2 Complete network final size PMFs 204
A.3 Square Network Final Size PMFs 209
A.4 Star Network final size PMFs .. 217
A.5 Toast network final size PMFs 224
A.6 Line network final size PMFs 231

B.1 Stochastic Vs Analytic Final Size Results for LoT Network
with $N = 6$ nodes ... 237
B.2 Probability that each node ever becomes infected in the LoT
network with $N = 6$... 238
B.3 The probability infection reaches each node and then stops,
given $I_0 = a$. $P_{end}(x)$ is the probability that the infection ends at
node x ... 239