Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Effects of Cross Linking on Collagen Type I Nanostructure and Nanostructural Response to Uniaxial Tension

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
In
Engineering

at Massey University, Manawatu, New Zealand.

Hanan Kayed
2016
Abstract

Collagen type I, is a fibrillar protein with a complex hierarchical structure, forming the extracellular matrices of an extensive range of organs and tissues. Applications for treated collagen materials vary vastly from commercial uses to the medical field for bioprosthetics and tissue grafts. Glycosaminoglycan (GAG), cross links naturally bridge fibrils, whilst glutaraldehyde is widely used as a synthetic linking agent in medical and other industries. No consensus has been reached regarding what contribution, if any, such cross links have on collagen structure and mechanical responses to applied stresses. This research investigated the role of GAG and glutaraldehyde cross links on the nanostructure and nanostructural response of type I collagen fibrils under uniaxial strain. Bovine pericardium was decellularised, producing native samples, or further treated with glutaraldehyde or chondroitinase ABC to produce glutaraldehyde cross linked or GAG-depleted collagen samples respectively. Synchrotron small angle X-ray scattering (SAXS), and atomic force and polarised light microscopy provided quantitative and qualitative information on collagen nanostructure. Uniaxial tensile experiments in conjunction with SAXS were performed to monitor structural changes with applied strain. Glutaraldehyde cross links constrained fibrils into more networked isotropic structures and demonstrated a mechanical function, recruiting 45% of fibrils into stretching which experienced strains of up to 6.4%. Comparison of native with chondroitinase ABC-treated samples showed GAGs do not constrain fibrils into alignment and have potential fibril lubricating effects; 12% of fibrils in native tissue experienced strains up to 4.1%, and 36% of fibrils experienced strains up to 4.6% in the GAG-depleted tissue. A higher degree of fibril sliding occurs in native tissue. Interestingly, whilst adult pericardia are more cross linked and fibrils of neonatal pericardia are more aligned, both tissues share similar propensities to form more isotropic structures with glutaraldehyde treatment. These findings build a comprehensive picture as to the function cross linking has in collagen structure and mechanical response at the nano-level, where such knowledge may prove useful for the preparation of collagen materials for specific applications.
Acknowledgements

I would like to take this opportunity to acknowledge the many people who have contributed either directly or indirectly to this research project.

Firstly I would like to thank my supervisor, Professor Richard Haverkamp; thank you for your on-going support, scientific writing advice and your enthusiasm. Your passion for your field and research in general never failed to motivate me, and your high standards of work allowed me to strive for quality and to achieve better outcomes.

I would also like to acknowledge the contribution of my co-supervisor, Associate Professor Gillian Norris.

Thank you to my amazing family, Mum, Dad, Abdul, Afnan and Ayah. When interesting findings were made and publications accepted you were there to congratulate and celebrate with me (whether you understood the material or not!), and when the work was challenging you always provided the upmost support and love. Without you the completion of this thesis would not have been possible (or at least very difficult).

I would like to thank my husband, Shadi for being there always. I greatly appreciate your support, love, and belief in me. Thank you for not only listening to my rambling of ideas and my attempts at making sense of results, but also for your attempts to understand my work and provide advice!

Thank you to the Australian Syncrotron SAXS/WAXS beamline team, specifically Nigel Kirby, Adrian Hawley and Stephen Mudie. Your expertise, technical skills and willingness to help allowed for the accommodation of our experimental requirements, made the realisation of ideas possible, and in turn research questions to be answered. The New Zealand Synchrotron Group is acknowledged for providing travel funding.

Thank you to John Shannon and Southern Lights Biomaterials for the supply of pericardium.
Table of Contents

1. Introduction ... 1
 1.1 Research Background and Relevance ... 1
 1.2 Research Questions ... 3
2. Literature Review ... 6
 2.1 Collagen .. 6
 2.1.1 Collagen Type I .. 6
 2.1.1.1 Primary structure: The Building Blocks of Collagen ... 6
 2.1.1.2 Secondary Structure: The Left Handed Helix .. 8
 2.1.1.3 Tertiary Structure: The Collagen Triple Helix ... 8
 2.1.1.4 Quaternary Structure: Collagen Fibrils ... 9
 2.1.2 Collagen Cross Linking In the Quaternary Collagen Structure 11
 2.1.2.1 Enzymatic Cross Linking .. 11
 2.1.2.2 Non-enzymatic Cross Linking ... 12
 2.2 Other Collagen Types ... 13
 2.2 Proteoglycan Cross Links .. 15
 2.2.1 Glycosaminoglycans ... 15
 2.2.2 Proteoglycans .. 16
 2.2.2.1 A Large PG: Aggrecan ... 16
 2.2.2.2 Small PGs: Decorin, Biglycan and Fibromodulin .. 16
 2.2.3 Interactions of Proteoglycans with Collagen ... 17
 2.2.4 Removal of GAG Cross Links .. 19
 2.2.5 The Chondroitinase ABC Enzyme ... 19
2.3 Synthetic Cross Links ... 20
 2.3.1 Glutaraldehyde ... 20
 2.3.2 Cross Linking Collagen with Glutaraldehyde .. 20
 2.3.4 Glutaraldehyde Cross Linking of Collagen Tissues for Bioprosthetic Heart Valves 22
 2.3.5 Advantages of Glutaraldehyde Collagen Cross Linking ... 23
 2.3.6 Disadvantages of Glutaraldehyde Collagen Cross Linking ... 23
 2.3.7 Other Cross Linking Methods ... 25
 2.3.7.1 Chemical Cross Linking Methods .. 25
 2.3.7.2 Biological Cross Linking Methods ... 26
 2.3.7.3 Physical Cross Linking Methods .. 26
2.4 Pericardium .. 27
 2.4.2 Pericardium: Nanostructure .. 29
 2.4.3 Pericardium: Sample Selection ... 30
List of Figures

Figure 2.1. The structure of: a) generic amino acid where R is a side group; b) proline; c) hydroxyproline... 7

Figure 2.2. Condensation reaction of two amino acids to form a peptide. 7

Figure 2.3. The quarter staggered array arrangement of five tropocollagen molecules parallel and in register to from a collagen fibril with regular gap and overlap zones which together comprise the D-spacing... 10

Figure 2.4. Association of PG core proteins with collagen fibrils in the gap region of the D-spacing, and antiparallel arrangement of GAG chains with one another to bridge fibrils: the left image shows the end-on view of fibrils, and the right image depicts the association of a PG-GAG complex with individual tropocollagen molecules in a fibril... 18

Figure 2.5. Skeletal diagram of a glutaraldehyde molecule.. 20

Figure 2.6. Pericardium: a) positon of a pericardial sac in relation to the heart, where the heart image is adapted from http://www.yourheartvalve.com/heartbasics/pages/heartvalves.aspx; b) regions and features of pericardium sac on the ventricular side... 28

Figure 2.7. Illustration of the heart showing the major valves: tricuspid valve, pulmonary valve, aortic valve and the mitral valve, sourced from: http://www.yourheartvalve.com/heartbasics/pages/heartvalves.aspx .. 33

Figure 2.8. A typical collagen material stress-strain curve showing the toe, heel and linear regions... 38

Figure 2.9. Basic SAXS setup showing the incident x-ray beams and the scattered rays which interfere to give a scattering pattern recorded by a detector... 41

Figure 2.10. Visual representation of Bragg’s law showing incidence X-ray beams of the same wavelength and the scattered rays from a crystalline structure, where one ray must travel and extra distance equivalent to an integer multiple of 2d(sinθ) to interfere constructively......... 42
Figure 2.11. Representative scattering patterns of collagenous biomaterial, a) scattering pattern demonstrating isotropic fibril arrangement; b) scattering pattern showing more anisotropic fibril alignment. ...44

Figure 2.12. Average integrated scattering pattern of a collagen material.45

Figure 2.13. The Australian Synchrotron facility showing setup, beamlines and main components: 1) electron gun; 2) linac linear accelerator; 3) booster ring; 4) storage ring; 5) example of a beamline; 6) end station. Image sourced from: http://www.synchrotron.org.au/synchrotron-science/how-is-synchrotron-light-created.46

Figure 2.14. Magnetic components in synchrotron storage rings: a) bending magnet; b) wiggler insertion device; c) undulator insertion device. Images sourced from: http://www.synchrotron.org.au/synchrotron-science/how-is-synchrotron-light-created.47

Figure 3.1. Pericardium a) ventricular side ready to be cut for samples; b) showing sampling area used and sample size; c) the different regions and axis of the pericardium. Adapted from (Kayed et al., 2015b) with permission of The Royal Society of Chemistry.56

Figure 3.2. Mounting of pericardium samples in preparation for SAXS data collection: a) mounting plate with Kapton tape, showing direction of the X-ray beam relative to the plate and sample; b) in-plane view of the pericardium sample to be measured normal to the surface; c) side-on view illustrating the sealing of the sample holder to maintain moisture.59

Figure 3.3. Control room setup with monitors displaying the camera output, SAXS patterns recorded and parameter controls. ...60

Figure 3.4. Visual representation of conversion of scattering patterns to OI value: a) representative raw scattering pattern of collagen; b) representative integrated scattering pattern of pericardium, the sharp peaks are due to diffraction from the D-spacing (at different orders); c) selection of the 5th order diffraction peak; d) baseline fitting to diffraction peak and resulting peak area/intensity; (e) representative azimuthal intensity variation plot for pericardium 5th collagen diffraction peak. ..62

Figure 3.5. GAG assay for pericardium for triplicate samples (error bars for 95% confidence intervals). Pairs that are significantly different (P<0.05 for α = 0.05) are shown by a *. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015b).65
Figure 3.6. Picrosirius stained sections of pericardium treated with a) chondroitinase ABC; b) native; c) glutaraldehyde. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015b).

Figure 3.7. Stress-strain curves for native pericardium (blue thick lines); chondroitinase ABC-treated pericardium (red dotted lines); glutaraldehyde-treated pericardium (black thin lines). Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015b).

Figure 3.8. Representative azimuthal intensity variation plots of the fifth collagen D-period diffraction peak for pericardium. The width of the central peak represents the spread in fibril orientation. Solid line, glutaraldehyde; dotted line, native; dashed line, chondroitinase ABC. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015b).

Figure 3.10. Atomic force microscopy height images for a) native bovine pericardium b) chondroitinase ABC-treated pericardium c) glutaraldehyde-treated pericardium. Images are 5 μm square. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015b).

Figure 4.1. Experimental setup of pericardium samples in custom built stretching machine: a) representation of clamp-sample set up in alignment with the SAXS beamline (Basil-Jones et al., 2012); b) photo of pericardium sample mounted between stretching apparatus clamps being wetted.

Figure 4.2. Assay results for the GAG content of the three differently treated pericardium samples. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a).

Figure 4.3. Stress–strain curves for the pericardium after three different treatments, while under increasing tension during the SAXS measurements: (●, _____ blue) chondroitinase ABC-treated; (▼, – – –, black) native; (■, ······· red) glutaraldehyde-treated. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a).

Figure 4.4. A series of typical scattering patterns of native pericardium subjected to a) no strain; b) strain of 0.18; c) strain of 0.45. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a).

Figure 4.5. Representative integrated scattering patterns of pericardium subjected to varying levels of strain: no strain (_____ blue); 18% strain (_____ red); 45% strain (– – –, black). The sharp peaks are due to diffraction of the D-spacing (at different orders) and the peaks split at
higher strain. The top image is for a 5° azimuthal angle segment in the direction of strain, the bottom image if for a 5° azimuthal angle segment normal to the direction of strain. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a).................86

Figure 4.6. Representative integrated scattering intensity at the 5th order D-spacing diffraction peak verses azimuthal angle for pericardium subjected to: no strain (_____ , blue); 18% strain (− − − , red); 45% strain (······· , black). Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a)..87

Figure 4.7. Three-dimensional representation of an example scattering pattern of a) native pericardium at a strain of 0.45; b) chondroitinase ABC-treated pericardium at a strain of 0.69, where both the fibril orientation (from the azimuthal angle axis) and the D-spacing shift (from the radial q axis) can be visualized. Only the azimuthal range −90° to 90° is represented as the remaining range is a duplication of this information and only a small portion of the radial angle is displayed representing one D-spacing diffraction peak. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a). ..87

Figure 4.8. Changes in OI and D-spacing as pericardium was subjected to increasing strain for each of the treatment types: (a and b) chondroitinase ABC-treated; (c and d) native; (e and f) glutaraldehyde-treated, where stress (■ , _____, black); weighted sum OI or D-spacing (●, _____, blue); non-recruited fibril OI or D-spacing (▼, − − − , red); recruited fibril OI or D-spacing (▲, ······, green), Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a)... ..89

Figure 4.9. Comparison of change in OI with increasing strain for the three treatments: a) average of all fibrils; b) recruited fibrils; c) non-recruited fibrils. Chondroitinase ABC-treated pericardium (●, _____, blue); native pericardium (▼, − − − , black); glutaraldehyde-treated pericardium (■ , ······, red). Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a)... ..89

Figure 4.10. Comparison of D-spacing change (indicating fibril strain) with increasing sample stress for the three treatments: chondroitinase ABC-treated (●, _____ , blue); native (▼, − − − , black); glutaraldehyde-treated (■, ······, red). a) Average of all fibrils; b) recruited fibrils only. Reproduced by permission of The Royal Society of Chemistry (Kayed et al., 2015a).................91

Figure 5.1. Representative SAXS scattering patterns of pericardium at different stages of uniaxial stretching: a) 0 % tissue strain; b) 20% tissue strain; c) 30% tissue strain.103
Figure 5.2. Representative integrated scattering patterns for pericardium showing scattering from different collagen structural features: meridional scattering from D-spacing (_____); equatorial scattering from fibril diameter (- - -). a) Integrated scattering patterns for pericardium at 0% strain; b) integrated scattering patterns for pericardium at 60% tissue strain. ...104

Figure 5.3. D-spacing for each of the three types of cross linking (error bars for 95% confidence intervals). Pairs that are significantly different (P<0.05 for α = 0.05) are shown by a *.105

Figure 5.4. Fibril diameter fitting using the Irena software package showing fibril diameter distributions for: a) pericardium at 0% strain with a single peak of fibril diameter distributions; b) pericardium at 30% strain with a bimodal fibril diameter distribution. ..106

Figure 5.5. Changes in fibril diameter (nm), D-spacing (nm) and OI as pericardium was subjected to strain for each of the treatment types: a) native; b) glutaraldehyde-treated; c) chondroitinase ABC-treated, where (▲, ___, red): fibril diameter; (■, ___, blue): D-spacing ; and (●, ___, green): OI. The 95% confidence intervals of the six measurements at each strain are represented here.108

Figure 6.1. Ventricular side of pericardium showing sample selection area (Kayed et al., 2016). ...119

Figure 6.2. Mounting of the pericardium samples: a) metal mounting plate showing holes for the samples and direction of the X-ray beam relative to the mounting plate; b) mounting of flat-on pericardium samples; c) mounting of the edge-on pericardium samples between rigid plastic supports in the metal plate (Kayed et al., 2016). ..120

Figure 6.3. Experimental setup: a) measurement with X-rays normal to the surface which provides information on the collagen fibril orientation in the plane of the tissue; b) measurement with X-rays edge-on to the sample which provides information on the layering of collagen fibrils in the tissue (Kayed et al., 2016). ...121

Figure 6.4. a) Representative normal to the sample surface scattering pattern of pericardium; b) representative edge-on scattering pattern of pericardium; c) integrated intensity of the scattering pattern: —, normal to the sample surface; - - - -, edge-on; d) scattering intensity with azimuthal angle for the 5th order collagen diffraction peak at 0.048 Å⁻¹: —, normal to the sample surface; - - - -, edge-on (Kayed et al., 2016). ...122
List of Tables

Table 2.1. Summary of the different collagen types, features and distribution in the body and tissues based on information from Mayne and Burgeson (1987), and (Fratzl, 2008).13

Table 2.2. Physical, enzymatic and chemical methods for the decellularisation of collagen.31

Table 2.3. The different layers of a natural aortic valve, their composition, nanostructure and collagen arrangement (Schoen and Levy, 1999, Liao et al., 2008). ...34

Table 2.4. Advantages and disadvantages of mechanical and biological based prosthetic heart valves36

Table 3.1. Tensile properties of pericardium (with 95% confidence intervals)67

Table 3.2. Orientation Index obtained for pericardium samples. ...69

Table 4.1. Recruitment of fibrils during stretching ..90

Table 5.1. D-spacing values for differently cross linked pericardium under no tension.105

Table 5.2. Average Poisson Ratio and Poisson ratio calculated using the 95% confidence intervals of fibril diameter and D-spacing for each treatment type: native, glutaraldehyde-treated, and chondroitinase ABC-treated pericardium. ...109

Table 6.1. Orientation indices for the native and glutaraldehyde-treated neonatal and adult pericardia samples measured with X-rays both normal to the pericardium face and edge-on. ...123

Table 6.2. t-test with α=0.05 for differences in orientation indices between native and glutaraldehyde-treated samples for neonatal and adult tissues, and both normal to the pericardium face and edge-on. ..123