Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Gaussian Process based Model Predictive Control

Gang Cao

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering

School of Engineering and Advanced Technology
Massey University
New Zealand

February 17, 2017
Abstract

The performance of using Model Predictive Control (MPC) techniques is highly dependent on a model that is able to accurately represent the dynamical system. The data-driven modelling techniques are usually used as an alternative approach to obtain such a model when first principle techniques are not applicable. However, it is not easy to assess the quality of learnt models when using the traditional data-driven models, such as Artificial Neural Network (ANN) and Fuzzy Model (FM). This issue is addressed in this thesis by using probabilistic Gaussian Process (GP) models.

One key issue of using the GP models is accurately learning the hyperparameters. The Conjugate Gradient (CG) algorithms are conventionally used in the problem of maximizing the Log-Likelihood (LL) function to obtain these hyperparameters. In this thesis, we proposed a hybrid Particle Swarm Optimization (PSO) algorithm to cope with the problem of learning hyperparameters. In addition, we also explored using the Mean Squared Error (MSE) of outputs as the fitness function in the optimization problem. This will provide us a quality indication of intermediate solutions.

The GP based MPC approaches for unknown systems have been studied in the past decade. However, most of them are not generally formulated. In addition, the optimization solutions in existing GP based MPC algorithms are not clearly given or are computationally demanding. In this thesis, we first study the use of GP based MPC approaches in the unconstrained problems. Compared to the existing works, the proposed approach is generally formulated and the corresponding optimization problem is efficiently solved by using the analytical gradients of GP models w.r.t. outputs and control inputs. The GPMPC1 and GPMPC2 algorithms are subsequently proposed to handle the general constrained problems. In addition, through using the proposed basic and extended GP based local dynamical models, the constrained MPC problem is effectively solved in the GPMPC1 and GPMPC2 algorithms. The proposed algorithms are verified in the trajectory tracking problem of the quadrotor.

The issue of closed-loop stability in the proposed GPMPC algorithm is addressed by means of the terminal cost and constraint technique in this thesis. The stability guaranteed GPMPC algorithm is subsequently proposed for the constrained problem. By using the extended GP based local dynamical model, the corresponding MPC problem is effectively solved.
Acknowledgements

I am deeply grateful to my co-supervisor Professor Edmund M-K Lai at Auckland University of Technology who was my primary supervisor during my first three years of Ph.D study at Massey University. His supervision is great and I am always inspired by the valuable discussions with him. He spent a lot of time on my academic writing and helped me attend several international and local academic conferences. I would not be successful in my Ph.D study without his longstanding support.

I am sincerely appreciative of Dr. Fakhrul Alam who is my primary supervisor in my last year at Massey University for his sharing of ideas and inspiration on possible applications. He helped a lot when I was preparing my thesis draft.

I wish to thank the administrators and technicians of SEAT in Massey University’s Albany Campus for their countless help.

Finally, I want to thank my family for their love and support.
Contents

Abstract ... i
Acknowledgements iii
List of Figures ix
List of Tables xii
List of Abbreviations xv

1 Introduction 1
 1.1 Background and Motivations 1
 1.2 Research Scope and Objectives 4
 1.3 Original Contributions 5
 1.4 Thesis Outline 6

2 Literature Review 7
 2.1 Data-driven Modelling 7
 2.1.1 Classical Regression 8
 2.1.2 Bayesian Regression 9
 2.2 Gaussian Process Models 11
 2.2.1 Standard Gaussian Process Models 11
 2.2.2 GP models for Multiple Outputs 13
 2.3 Hyperparameter Learning 19
 2.4 Applications of GP Models 21
 2.4.1 GP Modelling of Unknown Nonlinear System 21
 2.5 GP Applications on Control 22
2.5.1 Inverse Dynamics Control .. 22
2.5.2 Adaptive Control ... 22
2.5.3 Model Predictive Control ... 23

3 Hybrid PSO for Hyperparameters Learning .. 25
 3.1 Log-Likelihood and MSE Fitness Functions ... 26
 3.2 Enhanced PSOs for Hyperparameter Learning 28
 3.2.1 Standard PSO .. 29
 3.2.2 Multi-Start PSO ... 30
 3.2.3 Gradient-based PSO .. 31
 3.2.4 Hybrid PSO .. 32
 3.3 Simulation Results ... 34
 3.3.1 Standard PSO with MSE Fitness ... 35
 3.3.2 Two-output Modelling .. 37
 3.3.3 Enhanced PSO Algorithms .. 38
 3.4 Conclusion .. 44

4 Unconstrained Model Predictive Control Using Gaussian Process Models 47
 4.1 Unconstrained MPC based on GP Models .. 47
 4.1.1 Unknown Dynamical System Modelling using GP 47
 4.1.2 Uncertainty propagation .. 48
 4.1.3 GP based MPC .. 50
 4.1.4 Gradient Based Optimization .. 51
 4.2 Simulation Results ... 53
 4.2.1 Numerical Simulations of LTV System 53
 4.2.2 “Lorenz” Trajectory Tracking ... 56
 4.2.3 Numerical Simulations of NLTV System 58
 4.2.4 “Lorenz” Trajectory ... 60
 4.3 Conclusion .. 63
List of Figures

1.1 Model-based Predictive Control Strategy ... 2

2.1 Example showing the predicted outputs of IGP modelling 13

2.2 Structure of a Dependent Gaussian Process Model 15

3.1 Obtained MAE in the single-output dynamical system modelling over 50 runs ... 36

3.2 Predicted outputs in the single-output simulations 37

3.3 MIMO dynamical system modelling results: MAE and 2 standard errors (divided by 0.01) over 50 runs ... 38

3.4 Convergence behaviour of the four PSO algorithms in modelling the LTV system ... 40

3.5 Reference PFDL inputs and outputs for the two trajectories 42

3.6 Convergence behaviour of the four PSO algorithms with LL fitness in modelling the NLTV system ... 43

3.7 Convergence behaviour of the four PSO algorithms with MSE fitness in modelling the NLTV system ... 44

4.1 GP Modelling results of unknown Linear Time-Varying (LTV) system in the “Duffing” trajectory tracking problem .. 54

4.2 Simulation results of using GP based MPC in the “Duffing” trajectory tracking problem ... 55

4.3 GP Modelling results of unknown LTV system in the “Lorenz” trajectory tracking problem ... 57

4.4 Simulation results of using GP based MPC in the “Lorenz” trajectory tracking problem ... 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Uncertainty propagation over the sampling time in the trajectory tracking problems of the LTV system</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>GP Modelling results of unknown Nonlinear Time-Varying (NLTV) system in the “Curve” trajectory tracking problem</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>Simulation results of using GP based MPC in the “Curve” trajectory tracking problem</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>GP Modelling results of unknown NLTV system in the “Lorenz” trajectory tracking problem</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Simulation results of using GP based MPC in the “Lorenz” trajectory tracking problem</td>
<td>62</td>
</tr>
<tr>
<td>4.10</td>
<td>Uncertainty propagation over the sampling time in the trajectory tracking problems of the NLTV system</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Training errors over the sampling time in the trajectory tracking simulations</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulation result of tracking the “Step” trajectory using the proposed algorithms</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation result of tracking the “Lorenz” trajectory using the proposed algorithms</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>Simulation result of tracking the “Duffing” trajectory using the proposed algorithms</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>Integral Absolute Errors (IAE) over the sampling time in the trajectory tracking simulations</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Quadrotor Body-Inertial Frame</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Schematic diagram of quadrotor movements. Where Ω denotes the speed of propellers, and $\Delta\Omega$ represents the increment on Ω.</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>The Overall Control Scheme for Quadrotors</td>
<td>94</td>
</tr>
<tr>
<td>6.4</td>
<td>Modelling results of using GP modelling technique in the “Elliptical” trajectory tracking problem</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Modelling results of using GP modelling technique in the “Lorenz” trajectory tracking problem</td>
<td>98</td>
</tr>
<tr>
<td>6.6</td>
<td>Simulation results of tracking the “Elliptical” trajectory using the GPMPC2 based approach</td>
<td>99</td>
</tr>
<tr>
<td>6.7</td>
<td>Simulation results of tracking the “Lorenz” trajectory using the GPMPC2 based approach</td>
<td>100</td>
</tr>
</tbody>
</table>
6.8 “Elliptical” and “Lorenz” trajectory tracking results of using the GPMPC2 based approach ... 101
List of Tables

3.1 NLL and MSE values of two Convolved Gaussian Process (CGP) models of system described by (3.2). ... 27
3.2 Parameters used in the simulations ... 34
3.3 Comparison of two PSOs with different population sizes 36
3.4 Results of Linear Relationship .. 37
3.5 Results of Nonlinear Relationship ... 37
3.6 CGP model accuracies over 50 runs for the LTV system. 40
3.7 CGP model accuracies over 50 runs for the NLTV system. 43
3.8 Effects of training data size on model error and hybrid PSO runtime. . 44
5.1 Simulation Results of learning the unknown nonlinear system by using GP models ... 84
5.2 Runtime required to compute 189 control inputs by using the proposed algorithms in the trajectory tracking simulations 87
6.1 Modelling MSE values of the translational and rotational subsystems using the GP models in the trajectory tracking problems 97
List of Abbreviations

ANN Artificial Neural Network
BFGS Broyden-Fletcher-Goldfarb-Shanno
CG Conjugate Gradient
CGP Convolved Gaussian Process
DGP Dependent Gaussian Process
DMC Dynamic Matrix Control
DOF Degree-of-Freedom
FM Fuzzy Model
FP-SQP Feasibility-Perturbed Sequential Quadratic Programming
GA Genetic Algorithm
GMV Generalized Minimum Variance
GP Gaussian Process
GPC Generalized Predictive Control
GPDM Gaussian Process Dynamical Model
IAE Integral Absolute Error
IDC Inverse Dynamics Control
IGP Independent Gaussian Process
KKT Karush-Kahn-Tucker
LGP Local Gaussian Process
LL Log-Likelihood
LMC Linear Model of Coregionalization
LMI Linear Matrix Inequality
LQR Linear-Quadratic Regulator
LTV Linear Time-Varying
GP-LVM Gaussian Latent Variable Model
MAE Mean Absolute Error
MAP Maximizing A Posterior
MCMC Markov Chain Monte Carlo
MFAC Model-Free Adaptive Control
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
ML Machine learning
MLE Maximum Likelihood Estimation
MPC Model Predictive Control
mp-QP Multi-Parametric Quadratic Programs
MSE Mean Squared Error
NLL Negative value of Log-Likelihood
NLTV Nonlinear Time-Varying
NMPC Nonlinear Model Predictive Control
PCA Principal Component Analysis
PFC Predictive Functional Control
PFDL Partial Form Dynamic Linearization
PSO Particle Swarm Optimization
QP Quadratic Programming
RBFN Radial Basis Function Network
SMPC Stochastic Model Predictive Control
SQP Sequential Quadratic Programming
UAV Unmanned Aerial Vehicle