Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Geomorphology of the deglaciated Eglinton Valley, Fiordland: new insights into the origin of hummocky terrain

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science
in Geography

at Massey University, Manawatu, New Zealand.

Goldie Sky Walker

November 28, 2016
Abstract

The distribution and types of landforms within deglaciated valleys provide information on past processes and indicate the potential for future changes and associated hazards. This study is the first to characterise the landform assemblages within Eglinton Valley, Fiordland, New Zealand, and develop a model for the post-glacial evolution of the valley. In particular, it assesses the origins of hummocky topography on the valley floor which, like in many other parts of the world, have previously been interpreted to be glacial in origin.

Geomorphic field mapping, GPR, sedimentology (clast and agglomerate identification), and a novel terrestrial cosmogenic nuclide dating (TCND) method of extracting meteoric 10Be from pyroxene minerals were utilised to reconstruct the geomorphology of the valley during the Holocene.

Glacial deposits were confirmed at Knobs Flat and Eglinton Flat while RA deposits were conclusively found at Knobs Flat, Deer Flat, and adjacent to Lake Malvora. Eglinton Valley has been completely blocked on (a minimum of) three separate occasions, forming a large lake each time, with only Lake Gunn and a few minor swamps and lakes (e.g. Lake Malvora) remaining today. Relative age dating evidence suggests the first lake was formed by the large Deer Flat RA, the next formed due to the extensive Wesney Creek alluvial fan, and the youngest, Lake Gunn, as a result of the Lake Gunn Landslide ~7.6 kyrs BP. TCND was uncompleted due to lab contamination at the final step, however, the methods attempted here appeared to yield promising results.

The Eglinton Valley has been sculpted by glacial, mass movement, and fluvial processes. This work advances the knowledge of the processes responsible for the hummocky terrain found throughout Eglinton Valley, and adds to the currently limited pool of research into the reinterpretation of hummocky deposits within deglaciated valleys in a global and New Zealand context.
Acknowledgments

First and foremost I must acknowledge the immense support given to me by my family during this research. Mum, without your epic food boxes (and financial support), I would be very hungry and unhealthy. Papa, Chris, and Helen, without your financial support, I would have struggled to put the amount of time into my work as I have been able to, had I needed a part-time job. And a special thank you to my little sister, Gemma, for hosting me, without question, for seven weeks while I undertook lab work at Victoria University of Wellington (VUW).

The research carried out for this thesis would not have been possible without permission to access the DOC land, and financial support from the British Society of Geomorphology Postgraduate Research Grant, Graduate Women Manawatu Postgraduate Scholarship, Massey Foundation new New Zealand Grant, and Massey’s Geography Student Research Fund.

I would like to offer my sincerest gratitude to my supervisor, Dr. Sam McColl, who has supported me throughout my thesis with his patience, knowledge, and essential editing, whilst also leaving me to my own devices. I must also acknowledge Dr. Kevin Norton of VUW, whom I essentially ‘hijacked’ as a second supervisor. I immensely appreciate the large amount of time, effort, and energy you expended (all while you had a completely full calendar of your own students and projects) in order to help me learn the aspects of preparing difficult samples for TCND. On this note, I must say a huge thank you to all the staff I encountered while I was working at VUW. In particular, Jane Chewings and Sabrina Lange, as they, for some reason, accepted me as one of their own students and allowed me to work in their specialist labs. A special thank you to Professor Diane Seward for your genuine chats, moral support, and expertise in mineral identification.

I express my gratitude towards my field assistant and LaTeX tutor, Dr. Alastair Clement, who had to deal with snow in the middle of summer and angle-grinding rocks in the rain. Your support, endurance, and rock-carrying skills were immensely helpful! I can not forget the staff at Massey University who challenged my thoughts and ideas throughout this process and gave their time to meet my deadlines. Associate Professor Bob Stewart - thank you for your XRD skills; Niki Murray - cheers for your enthusiasm and humour when analysing my SEM stubs; Dr. Clel Wallace
- thank you for your input on weird and random metamorphic minerals in my thin sections; Anja Moebis - thanks for allowing me to take over the corner of the lab and trusting me with random machinery; and Szabolcs Kosik - thank you for showing me that the rock saw will not cut my fingers off.

Finally, I can not forget my friends. While working on this project I have pretty much removed myself from the world of the living. I really, really appreciate you all still being there for me, especially as I have been prioritising this work over you. You guys are the best.
“Let us try to recognise the precious nature of each day.” Dalai Lama XIV.
Contents

List of Figures xi

List of Tables xv

1 Introduction 1
 1.1 The nature of the problem 1
 1.2 Aims 2
 1.3 Objectives 2

2 Literature Review 3
 2.1 Introduction 3
 2.2 Landslide geomorphology, processes, and hazards 4
 2.2.1 Slope stability in alpine environments 4
 2.2.1.1 States of stability 4
 2.2.1.2 Preconditioning, preparatory, and triggering factors 5
 2.2.2 Mass movement classification 5
 2.2.3 Rock avalanches 7
 2.2.3.1 Rock avalanche kinematics 7
 2.2.3.2 Rock avalanche deposit morphology 7
 2.2.3.3 Rock avalanche deposit sedimentology 10
 2.2.3.4 Rock avalanche distribution in alpine regions 13
 2.2.4 Hazards associated with rock avalanches 14
 2.2.4.1 Landslide dams 14
 2.2.4.2 Global impacts of rock avalanches 14
 2.3 Glaciers 16
 2.3.1 Sediment transport in a glacial system 16
 2.3.2 Glacial history of New Zealand 17
 2.3.3 Glacial deposits 19
 2.3.4 Primary and secondary deposition 20
 2.3.5 Glacial deposit sedimentology 20
 2.3.6 Complex kame morphology 20
 2.3.7 Kame sedimentology 21
 2.4 Differentiating rock avalanche deposits from glacial deposits 22
CONTENTS

2.5 Rock avalanche effect on glacier behaviour 23

3 Regional setting 25
 3.1 Introduction 25
 3.2 Geological setting - regional overview 25
 3.2.1 Eglinton Valley geology 29
 3.2.1.1 Median Batholith 29
 3.2.1.2 Brook Street Terrane 29
 3.2.1.3 Dun Mountain-Matai Terrane 29
 3.2.1.4 Caples Terrane 29
 3.2.2 Plate boundary tectonics 30
 3.3 Geomorphic processes and hazards - regional overview 30
 3.3.1 Mass movement history 31
 3.3.2 Late-glacial history 33
 3.3.2.1 The Last Glacial Maximum 33
 3.3.2.2 Te Anau Glacier 33
 3.4 Geomorphology of Eglinton Valley 37
 3.5 Site description 40
 3.6 Previous work 42

4 Methods 45
 4.1 Introduction 45
 4.2 Permits and reconnaissance 45
 4.2.1 Preliminary field investigations 46
 4.3 Data types and collection methods 47
 4.3.1 GIS mapping 47
 4.3.2 Ground Penetrating Radar 47
 4.3.3 Terrestrial Cosmogenic Nuclide sample collection 49
 4.4 Sedimentology 53
 4.4.1 Hand-specimen field sampling 53
 4.4.2 Hand-specimen lab analysis 56
 4.4.2.1 Clast roundness method 56
 4.4.2.2 Provenance analysis method 57
 4.4.3 Microsediment SEM examination preparation 58
 4.4.3.1 Whole grains 61
 4.4.3.2 Polished grain cross-sections 61
 4.5 TCND 63
 4.5.1 Terrestrial Cosmogenic Nuclide sample preparation overview 63
 4.5.2 Thin-section preparation 63
 4.5.3 Mineral separation - magnetic 73
 4.5.3.1 Size preparation - cleaning 73
 4.5.3.2 Pure mineral identification 73
CONTENTS

4.5.3.3 Hand magnet and Frantz .. 74
4.5.4 Pyroxene preparation and 10beryllium separation chemistry .. 75
 4.5.4.1 Magnetic separation - pyroxene 75
 4.5.4.2 Pyroxene cleaning procedure 76
 4.5.4.3 Pyroxene 10beryllium separation chemistry 77
 4.5.4.4 Leach 1 - hydroxylammonium-chloride 77
 4.5.4.5 Leach 2 - hydrochloric acid 78
 4.5.4.6 Leach effectiveness 78
4.5.5 Quartz preparation and 10Be separation chemistry 79
 4.5.5.1 Quartz separation 79
 4.5.5.2 Quartz leaching technique 79
 4.5.5.3 10Be measurements 86

5 Results

5.1 Introduction .. 87
5.2 Hummock morphology - surface expressions 89
5.3 Hummock morphology - subsurface 91
5.4 Sedimentology of the hummocks 94
 5.4.1 Clast analysis - angularity index 94
 5.4.2 Microsedimentology ... 98
 5.4.2.1 Microtextures .. 112
5.5 Lacustrine deposits .. 113
5.6 Provenance analysis .. 115
 5.6.1 Alluvial fans .. 115
 5.6.2 Angular clasts .. 115
 5.6.3 Rounded- angular clasts 115
5.7 Hummock ages .. 116

6 Discussion

6.1 Introduction .. 117
6.2 Geomorphology of Eglinton Valley 117
6.3 Geomorphic evolution of Eglinton Valley 121
 6.3.1 Bedrock valley shape 121
 6.3.2 Paraglacial response of the valley 121
 6.3.3 Origins of the hummocky deposits by location 122
 6.3.3.1 Recessional moraine 122
 6.3.3.2 Eglinton Flat deposits 124
 6.3.3.3 Knobs Flat deposits 126
 6.3.3.4 Deer Flat and Malvora Lake hummocks 131
 6.3.4 Alluvial fan formation 135
 6.3.4.1 Alluvial fan size variability 138
 6.3.4.2 A lack of river terraces 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.5.1 Sediment delivery into Eglinton Valley</td>
<td>140</td>
</tr>
<tr>
<td>6.3.6 Multiple dammed lakes</td>
<td>141</td>
</tr>
<tr>
<td>6.3.6.1 Wesney Creek Fan as a valley dam</td>
<td>141</td>
</tr>
<tr>
<td>6.3.6.2 Deer Flat rock avalanche as a dam</td>
<td>143</td>
</tr>
<tr>
<td>6.3.6.3 Sequence of paleo-lake events</td>
<td>147</td>
</tr>
<tr>
<td>6.4 Conditions for agglomerate formation</td>
<td>150</td>
</tr>
<tr>
<td>7 Conclusion</td>
<td>151</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>7.2 A geomorphic model for Eglinton Valley floor</td>
<td>151</td>
</tr>
<tr>
<td>7.2.1 Glacial deposits</td>
<td>152</td>
</tr>
<tr>
<td>7.2.2 Rock avalanche deposits</td>
<td>152</td>
</tr>
<tr>
<td>7.2.3 Recognition of paleo-lakes</td>
<td>152</td>
</tr>
<tr>
<td>7.3 Future work</td>
<td>152</td>
</tr>
<tr>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>Appendices</td>
<td>171</td>
</tr>
<tr>
<td>A Beryllium separation chemistry</td>
<td>171</td>
</tr>
<tr>
<td>A.1 Beryllium separation chemistry</td>
<td>171</td>
</tr>
<tr>
<td>A.1.1 Leach 1 - hydroxylammonium-chloride</td>
<td>171</td>
</tr>
<tr>
<td>A.1.2 Leach 2 - hydrochloric acid</td>
<td>172</td>
</tr>
<tr>
<td>B Geomorphic map of Eglinton Valley</td>
<td>173</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Slope stability states .. 4
2.2 Typical rock avalanche deposit morphologies 9
2.3 Universally corresponding features of a rock avalanche deposit ... 12
2.4 Southwest New Zealand landslide distribution 13
2.5 Glacial sediment transport paths 16
2.6 Middle to Late Pleistocene ice extents in New Zealand 18
2.7 Glacial deposits .. 19
2.8 Glacial kame reinterpreted as RA deposit 21
2.9 Kame and kettle topography .. 21
3.1 Location map .. 26
3.2 Eglinton Valley geological map 28
3.3 Lake Gunn Landslide source and deposit area 32
3.4 LGM ice extent at Lake Te Anau 35
3.5 Earl Mountains and Knobs Flat hummocks 36
3.6 Earl Mountains .. 38
3.7 Livingston Mountains ... 39
3.8 Quaternary deposits in Eglinton Valley 40
3.9 Knobs Flat Fan - exposed section 41
3.10 Active alluvial fan ... 42
4.1 Field reconnaissance photos .. 46
4.2 GPR line at Knobs Flat ... 48
4.3 GPR line at Deer Flat ... 48
4.4 Cosmo sample locations ... 50
4.5 TCN sample collection ... 52
4.6 Clast sample locations ... 54
4.7 Clast sampling within active channels and hummocks 55
4.8 Clast analysis - hand specimens 56
4.9 Clast roundness classes .. 57
4.10 Microsediment sample locations 59
4.11 Lake Gunn Landslide microsediment samples 60
4.12 Example microsediment sample site 60
4.13 SEM sieving preparation 61
4.14 SEM preparation steps 62
4.15 Thin-section preparation 64
4.16 Thin section - EG B CS 1 66
4.17 Thin section - EG N CS 3 67
4.18 Thin section - EG O CS 2 68
4.19 Thin section - EG O CS 3 69
4.20 Thin section - EG S CS 9a 70
4.21 Thin section - EG S CS 9b 71
4.22 XRD analysis ... 72
4.23 Preparation steps for magnetic separation 73
4.24 Magnetic separation - hand magnet 74
4.25 Frantz isomagnetic separator 75
4.26 Ultrasonic bath ... 76
4.27 Amorphous oxide-bound beryllium leaching 81
4.28 Amorphous extraction dissolution 82
4.29 Crystalline oxide-bound beryllium extraction initial steps 83
4.30 Crystalline oxide extraction - sediment steps 84
4.31 Crystalline oxide extraction - solution steps 86

5.1 Geographical areas within Eglington Valley 88
5.2 Hummock morphology - surface 90
5.3 Knobs Flat GPR results 92
5.4 Deer Flat GPR results 93
5.5 Clast roundness histograms - upper valley 95
5.6 Clast roundness histograms - mid valley 96
5.7 Clast roundness histograms - lower-mid valley 97
5.8 Clast roundness histograms - lower valley 98
5.9 SEM micrographs - Malvora Lake (A) 99
5.10 SEM micrographs - Middle Deer Flat (B) 100
5.11 SEM micrographs - Malvora Lake (C) 101
5.12 SEM micrographs - Kiosk Creek Fan (D) 101
5.13 SEM micrographs - Upper Eglington Flat (E) 102
5.14 SEM micrographs - Upper Eglington Flat (F) 103
5.15 SEM micrographs - Upper Eglington Flat (G) 104
5.16 SEM micrographs - Lower Eglington Flat (H) 105
5.17 SEM micrographs - Lake Gunn Landslide (I) 106
5.18 SEM micrographs - Lake Gunn Landslide (J) 107
5.19 SEM micrographs - Lake Gunn Landslide (K) 108
5.20 SEM micrographs - Lower Deer Flat (L) 109
5.21 SEM micrographs - Lower Deer Flat (M) 110
5.22 SEM micrographs - Upper Eglington Flat (N) 111
5.23 SEM micrographs - possible silica precipitation 112
5.24 Lacustrine deposits .. 114

6.1 Geomorphic map of Eglinton Valley 118
6.2 Geomorphic map of Upper Eglinton Valley 119
6.3 Geomorphic map of Middle Eglinton Valley 120
6.4 Recessional moraine .. 123
6.5 Hummocks at Knobs Flat 126
6.6 Internal structure - Middle Knobs Flat RA deposit 129
6.7 Internal structure - Lower Deer Flat 134
6.8 Eglinton River tributary streams 137
6.9 Clast size variability in tributaries 139
6.10 Lake Gunn Landslide gorge 141
6.11 Exposed silt at Deer Flat 142
6.12 Exposed silt near Malvora Lake 144
6.13 Eglinton Valley long-profile 146
6.14 Wesney Creek catchment 148
6.15 Wesney Creek Fan - Paleo channels 149
List of Tables

2.1 Mass movement classification .. 6
2.2 Global rock avalanches ... 15
4.1 Roundness classes and indices 57
4.2 Pyroxene constituent of each sample 77
4.3 Pyroxene sample weights throughout chemistry 78
4.4 Quartz sample weights throughout chemistry 79
6.1 Upper and Lower Eglinton Flat sample analysis 125
6.2 Knobs Flat sample analysis 128
6.3 Deer Flat sample analysis 132