Investigating the role of Histone Deacetylase HDAC4 in long-term memory formation

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Genetics

at Massey University, Manawatu
New Zealand.

Silvia Schwartz
2016
ABSTRACT

Epigenetic mechanisms are emerging as master regulators of cognitive abilities such as learning and memory. It has been previously shown that the histone deacetylase HDAC4 plays a critical role in memory formation in both mammals and insects although the specific mechanisms through which it acts have not yet been elucidated. HDAC4 undergoes nucleocytoplasmic shuttling and, in neurons, it is largely cytoplasmic implying it may play both nuclear and non-nuclear functions. To identify upstream regulators and downstream targets of HDAC4, a genetic interaction screen was performed in the fruit fly Drosophila melanogaster, a powerful model system to study the genetic mechanisms of neurological disease. Twenty-nine genes were found to interact with HDAC4 suggesting they are part of the same molecular pathway. Functional network analysis revealed that many of the genes could be grouped into three biological categories comprising transcriptional factors, SUMOylation machinery enzymes and cytoskeletal regulators/interactors. Within the latter, Ankyrin2 was selected for further analysis as it is implicated in synaptic stability and in human intellectual disability. In addition HDAC4 harbours a conserved ankyrin binding domain. Immunohistochemical analyses showed widespread distribution of Ankyrin2 throughout the adult brain and coincident distribution with HDAC4 was observed in the axons of the mushroom body, a key structure for memory formation in flies. Both HDAC4 and Ankyrin2 were also found to regulate mushroom body development. RNAi-mediated depletion of Ankyrin2 in the adult brain impaired long-term memory in the courtship suppression assay, a model of associative memory and preliminary evidence of a physical association between HDAC4 and Ankyrin2 was also demonstrated. The genes identified in the screen provide new avenues for investigation of the mechanisms through which HDAC4 regulates memory formation and preliminary analyses suggest that interaction with the cytoskeletal adaptor Ankyrin2 may involve remodelling of the actin/spectrin cytoskeleton, phenomenon that underlies memory related processes like synaptic plasticity and neuronal excitability.
ACKNOWLEDGEMENTS

This was the year of the Summer Olympic Games and I could not help the feeling of participating to a sort of Olympic Games myself… as a PhD student. In particular, this sport event corresponded exactly with my thesis writing and made me realise that academic life and sport training share similarities. As in sport training, the good days are rare. Most of the time, it is hard, it takes a long time, things go wrong, better and then wrong again and in order to be successful at either, your commitment must be to the process, not to the final prize. However, with dedication, passion, patience and a good dose of optimism the final goal would gradually approach.

Firstly, I would like to express my gratitude to my supervisor Dr Helen Fitzsimons for the endless support, encouragement and the inestimable enthusiasm for my project. Being trained and mentored by someone who really understands the “sport” is an amazing experience and I am in awe of your depth of knowledge and optimism that helped me during the most difficult days. You taught me that every day is a good day because there is something new to learn. An immense appreciation goes to my co-supervisors, Professor Kathryn Stowell and Dr Tracy Hale for their massive knowledge, precious advice and suggestions, and for their priceless availability and dedication. Yes… I have been a very lucky student.

To Dr Matthew Savoian, Mr Doug Hopcroft, Ms Niki Murray and Ms Jordan Taylor (MMIC), thank you not only for your fundamental technical expertise but also for being such nice persons. In particular to Matthew, for the support and for sharing your life experiences and wise advice. To Dr Dave Wheeler for his assistance with bioinformatics analysis, for the greatest eggs I have ever had and for the amusing fights with Tracy about New Zealanders versus Australians. I learnt a lot!

Special thanks go to Olaf and Steve for helping me setting up the behavioural equipment that allowed me to work efficiently during the last months. You are geniuses!

To my lab mates, Sarah, Patrick F., Patrick M., Lance and Raoul for the nicest work environment I have ever encountered. You made this long and difficult path smoother and enjoyable. I will miss you a lot. To Ann, Cynthia, Colleen and Paul for being so perfectly organised and for your endless availability. You really are the backbone of the institute.
Thank you to Dr Patrick Biggs and Amanda for the lovely way you welcomed me here in New Zealand and for the delicious dinners. Thanks to the friends I met here, who were boosting my moral especially during the writing period: Simren, Max, Mariela, Flavia, Ermanno, Arvina, Patry, Luca, Yimi, Angi, Gabor, Zsuzsa, Szabolcs, Alex, Ben, and to all the people who simply asked me ‘how are you?’ That really made a difference. Thanks to my best friends back home for the virtual support and for keeping me up to date on their important life events: Giulia, Valeria, Andrea, Virginia, Fabiola, Beatrice, Sara, Alessia.

To my family, for the endless support and for always being proud of me, even for the very small things. I know being far away was a hard thing for you to handle, as it was for me, but you always kept a smile on your faces and showed me how interested and happy you were about my experience at 20,000 Km of distance.

Last but not the least, to Mauro and his family. Without you and your love, the New Zealand experience would have never happened and I will never stop thanking you, also because you convinced me that a cat would have been of great help and you were right, our sweet Tori helped us in the difficult moments.

I always believe that after a wonderful and rich experience ‘the best is yet to come’… Well, it will be very hard to exceed what I experienced here in New Zealand but I will do my best to, at least, get close to that.

This project was funded by the Health Research Council of New Zealand.
Table of Contents

Abstract... i
Acknowledgements... ii
Table of contents .. iv
List of Figures ... ix
List of Tables .. xiii
Abbreviations ... xiv

1 Introduction .. 1
 1.1 Neurological disorders: a burden of our times ... 2
 1.2 Learning and Memory: a historical journey ... 3
 1.3 The use of animal models to study neurodegenerative processes: *Drosophila melanogaster* the model system ... 9
 1.3.1. The mushroom body of *Drosophila melanogaster*: a brain structure involved in memory .. 10
 1.3.2 *Drosophila* and its genetic tractability .. 14
 1.3.3 The use of behavioural paradigms to test learning and memory 18
 1.4 The role of epigenetics in learning and memory formation 23
 1.4.1 Histone Acetyltransferases (HATs) .. 23
 1.4.2 Histone Deacetylases (HDACs) .. 25
 1.4.2.1 HDACs in *Drosophila melanogaster* ... 27
 1.4.2.2 Inhibition of HDAC activity improves memory 28
 1.5 Histone Deacetylase HDAC4 and its role in memory formation 29
 1.5.1 *Drosophila* HDAC4. .. 31
 1.5.2 HDAC4: a master regulator of memory ... 32
 1.6 Ankyrin proteins .. 34
 1.7 Aims and objectives ... 42

2 Materials and methods .. 44
 2.1 *Drosophila melanogaster* strains ... 45
 2.2 Maintenance of fly strains .. 45
 2.2.1 Genetic crosses ... 45
 2.3 Rough eye phenotype screen ... 46
 2.3.1 Scanning electron microscopy ... 46
Table of Contents

2.4 Isolation of *Drosophila* heads ... 47
2.5 Transcriptome analysis .. 47
2.6 Immunohistochemistry on whole mount *Drosophila* brains 48
2.7 Polymerase Chain Reaction (PCR) ... 50
 2.7.1 Standard PCR amplification ... 50
 2.7.2 High Fidelity PCR .. 51
2.8 Sequencing ... 52
2.9 DNA purification .. 53
 2.9.1 PCR purification ... 53
 2.9.2 Agarose gel purification ... 53
2.10 DNA manipulation ... 53
 2.10.1 Restriction digest .. 53
 2.10.2 Ligation .. 54
 2.10.3 Plasmid transformation ... 54
 2.10.4 Plasmid DNA purification ... 54
 2.10.4.1 Mini preparation of plasmid DNA .. 54
 2.10.4.2 Midi-scale preparation of plasmid DNA ... 55
 2.10.5 Addition of MYC epitope tag to the C-terminus of Ankyrin1 55
 2.10.6 Cloning of HDAC4 ankyrin binding region into pGEX-2TK 57
2.11 Generation of transgenic flies ... 58
 2.11.1 Genetic crosses to establish lines ... 60
2.12 Preparation of cell lysates .. 61
2.13 SDS-PAGE and western blotting ... 62
2.14 Coomassie Brilliant Blue staining .. 64
2.15 GST pull-down assay .. 64
 2.15.1 HDAC4-GST Fusion construct expression and induction 64
 2.15.2 GST pull-down .. 66
2.16 RNA manipulation .. 67
 2.16.1 RNA extraction .. 67
 2.16.2 cDNA synthesis ... 68
 2.16.3 Quantitative PCR ... 68
2.17 Courtship suppression assay ... 69
2.18 Statistical analysis ... 71

3 Results ... 72
3.1 Identification of genes transcriptionally regulated by HDAC4 .. 73

3.2 A genetic screen for modifiers of the HDAC4-induced rough eye phenotype ... 81

3.2.1 Development and validation of the method ... 84

3.2.2 A genetic screen for modifiers of the HDAC4-rough eye phenotype detected genes involved in transcriptional regulation, cytoskeleton regulation and SUMOylation pathway .. 88

3.3 Characterisation of Ankyrin1 and Ankyrin2 expression in the adult brain and their roles in brain development and memory formation ... 95

3.3.1 Ankyrin2 .. 96

- **3.3.1.1** Ankyrin2 is highly expressed throughout the fly brain and it is an axonal protein.. 96
- **3.3.1.2** Ankyrin2 is required for normal development of the mushroom body 103
- **3.3.1.3** Ankyrin2 is required for long-term memory formation both during development and in adulthood .. 110
 - **3.3.1.3.1** Depletion of Ankyrin2 during development impairs long-term memory formation but does not affect learning and immediate recall of memory 111
 - **3.3.1.3.2** Knockdown of Ankyrin2 in the adult brain impairs long-term memory formation ... 114
 - **3.3.1.3.2.1** Decreased expression of Ankyrin2 in all neurons of the brain impairs long-term memory formation .. 114
 - **3.3.1.3.2.2** Knockdown of Ankyrin2 in the mushroom body impairs long-term memory formation ... 116
 - **3.3.1.3.2.3** Ankyrin2 is required in the γ lobes for long-term memory formation .. 120

3.3.2 Ankyrin1 ... 126

- **3.3.2.1** Ankyrin1 is localised in the mushroom body lobes and calyces 126
- **3.3.2.2** Expression of Ankyrin1 is dispensible for development of the mushroom body lobes ... 128
- **3.3.2.3** Depletion of Ankyrin1 during development is not required for long-term memory formation ... 131

3.4 Investigation of the relationship between HDAC4 and Ankyrin2 132

3.4.1 HDAC4 co-localises with Ankyrin2 in mushroom body lobes 133

3.4.2 HDAC4 is required for normal development of the mushroom body lobes..... 136

3.4.3 Investigation of a physical interaction between HDAC4 and Ankyrin2............ 142

3.4.4 Examining an interaction between HDAC4 and Ankyrin2 in long-term memory formation in Drosophila: preliminary data ... 147
4 Discussion ... 150

4.1 Identification of genes that interact with HDAC4 ... 151

4.1.1 Transcriptome analysis in the head of Drosophila reveals that HDAC4 does not have a global effect on gene expression .. 151

4.1.2 Transcription factors, SUMOylation machinery enzymes and cytoskeletal regulators interact with HDAC4 ... 153

4.1.2.1 The rough eye phenotype screen detected conserved interactions in the HDAC4 genetic pathway ... 154

4.1.2.2 Novel interactions were detected by the HDAC4-induced rough eye phenotype screen .. 157

4.1.2.3 HDAC4 interacts with the SUMOylation machinery .. 158

4.1.2.4 HDAC4 interacts with regulators of the cytoskeleton 159

4.1.3 Limitations of the analysis ... 163

4.1.4 Future directions ... 165

4.2 Analysis of the roles of Ankyrin2 and Ankyrin1 in mushroom body development and long-term memory formation ... 166

4.2.1 Ankyrin2 is broadly distributed within the adult brain .. 166

4.2.2 Ankyrin2 is required for maturation of the mushroom body lobes and long-term memory formation ... 166

4.2.2.1 Future directions ... 168

4.2.3 Ankyrin1 is distributed in the mushroom body and it is not dispensable for brain development and long-term memory formation ... 170

4.3 Investigating the interaction between HDAC4 and Ankyrin2 171

4.3.1 HDAC4 and Ankyrin2 co-localise in the axons of the mushroom bodies as well as with Neuroglian suggesting a possible interaction among these factors 171

4.3.2 A pull-down assay suggests a physical interaction between Ankyrin2 and HDAC4 ankyrin repeat-binding domain ... 173

4.3.3 HDAC4 and Ankyrin2 may interact during long-term memory formation 175

5 Summary and future perspectives .. 177

5.1 Overexpression of HDAC4 in the whole fly head has minimal effect on global changes in gene expression ... 178

5.2 A genetic screen for modifiers of the HDAC4-induced rough eye phenotype detected genes involved in transcription, SUMOylation and cytoskeletal organisation ... 179
5.3 Ankyrin2 is a cytoplasmic protein required for Drosophila mushroom body development and long-term memory formation in both developing and post-mitotic phases .. 180
5.4 A preliminary study on a putative interaction between Ankyrin2 and HDAC4 ... 180
6 References ... 182
7 Appendices .. 218
7.1 Supplemental tables .. 219
7.2 Supplemental figures .. 229
7.2.1 Subcloning of DNA (Ankyrin1-MYC) ... 229
LIST OF FIGURES

Figure 1.1 Synaptic connectivity..4
Figure 1.2 Conserved molecular mechanisms of memory storage in Aplysia sensory neuron (A) and in mouse CA1 hippocampal neuron (B) ...8
Figure 1.3 The mushroom body of *Drosophila melanogaster*..13
Figure 1.4 The GAL4/UAS binary system in *Drosophila*. ...16
Figure 1.5 TARGET system. ..17
Figure 1.6 Aversive odour conditioning assay...19
Figure 1.7 Sequence of courtship behaviour steps undertaken by male fruit flies.20
Figure 1.8 Conditioned courtship suppression assay..22
Figure 1.9 Acetylation-deacetylation mechanism..24
Figure 1.10 Human HDAC family members. ...27
Figure 1.11 HDAC4 translocation regulatory domains. ..31
Figure 1.12 Domain organisation and alignment of *Drosophila* and human HDAC4 proteins ..31
Figure 1.13 Domain structure of HDAC4 highlighting the ankyrin repeats binding domain ..35
Figure 1.14 Schematic representation of the domains organisation of canonical ankyrins. ..36
Figure 1.15 The axon initial segment..37
Figure 1.16 Schematic representation of ANK-G variants within the vertebrate nervous system ..39
Figure 1.17 Ankyrin repeat region alignment between human ANK-G and *Drosophila* Ank2 ..41
Figure 2.1 Transgenic insertion mechanisms ..59
Figure 2.2 Injection procedure to generate transgenic flies ..61
Figure 3.1 The *elav-GAL4; tub-GAL80* construct drives transgene expression in all neurons during adulthood ...73
Figure 3.2 Representation of the genetic scheme to generate *HDAC4OE* and control flies for transcriptome analysis ...74
Figure 3.3 Boxplots showing the FPKM distribution of the sample replicates75
Figure 3.4 Wild-type eye of *Drosophila*. ...82
Figure 3.5 The GMR-GAL4/UAS system ... 82
Figure 3.6 Cartoon showing the premise of the genetic screen for modifiers of the
HDAC4-induced rough eye phenotype ... 84
Figure 3.7 Eye images showing the impact of different dose of _HDAC4_ on the eye surface
phenotype and the validation of the screen ... 86
Figure 3.8 Enhancers of the _HDAC4_-induced rough eye phenotype 89
Figure 3.9 STRING analysis of the enhancers of the _HDAC4_-induced rough eye
phenotype ... 93
Figure 3.10 Ank2 is broadly expressed in the adult brain of _Drosophila_. 97
Figure 3.11 Ank2 co-localises with Nrg in the axons of the adult brain 98
Figure 3.12 Colour-blind friendly version of Figure 3.11 .. 99
Figure 3.13 Ank2 localises to axons in the brain... 100
Figure 3.14 Ank2 does not localise in the dendritic regions of the _Drosophila_ brain 101
Figure 3.15 Ank2 localises to distinct nuclear compartment in the nuclei of the Kenyon
cells. .. 102
Figure 3.16 Ank2 does not localise in glial cells .. 103
Figure 3.17 _Ank2_ knockdown phenotypes at 22°C .. 105
Figure 3.18 _Ank2_ knockdown phenotypes at 25°C .. 107
Figure 3.19 _Ank2_ knockdown phenotypes at 27°C .. 109
Figure 3.20 Elav-GAL4 pan neuronal knockdown of _Ank2_ in the brain during
development abolishes LTM formation .. 112
Figure 3.21 Elav-GAL4 pan-neuronal knockdown of _Ank2_ throughout development has
no impact on learning and immediate memory ... 113
Figure 3.22 Pan-neuronal knockdown of _Ank2_ induced during adulthood impairs LTM
formation ... 115
Figure 3.23 Pan-neuronal knockdown of _Ank2_ is not induced by the TARGET system
during development .. 116
Figure 3.24 OK107-GAL4 driver labelling profile ... 117
Figure 3.25 Decreased expression of _Ank2_ in the mushroom body severely compromises
LTM formation in adult flies .. 118
Figure 3.26 MB247-GAL4 driver expression profile .. 119
Figure 3.27 RNAi-mediated decreased expression of _Ank2_ in α/β and γ lobes negatively
affects LTM formation in adult flies .. 119
Figure 3.28 1471-GAL4 driver expression profile ... 120
Figure 3.29 Ank2 knockdown driven by 1471-GAL4 in the γ neurons does not affect LTM significantly ... 121
Figure 3.30 NP1131-GAL4 driver expression profile .. 122
Figure 3.31 NP1131-GAL4; tub-GAL80ts driven expression of UAS-Ank2RNAi affects LTM formation ... 122
Figure 3.32 c739-GAL4 driver expression profile .. 123
Figure 3.33 Knockdown of Ank2 in α/β neurons does not affect LTM formation ... 124
Figure 3.34 c305a-GAL4 driver expression profile ... 125
Figure 3.35 Knockdown of Ank2 does not affect LTM formation in α'/β’ neurons 125
Figure 3.36 Ank1 is distributed in the mushroom body lobes and in the calyces 127
Figure 3.37 Ank1 knockdown phenotypes at 25°C 129
Figure 3.38 Ank1 knockdown phenotypes at 27°C 130
Figure 3.39 Decreased expression of Ank1 during developmental phases does not impair LTM formation ... 131
Figure 3.40 HDAC4 harbours an ankyrin-repeat-binding domain 132
Figure 3.41 Ank2 and HDAC4 are distributed in the same brain regions 134
Figure 3.42 Schematic representation of Nrg structural domains 135
Figure 3.43 HDAC4 strongly co-localises with Nrg in the lobes of the mushroom body ... 136
Figure 3.44 HDAC4 overexpression phenotypes ... 137
Figure 3.45 Knockdown of Ank2 and overexpression of HDAC4 have similar detrimental effects on mushroom body lobes development ... 138
Figure 3.46 Illustration of the genetic mating scheme employed to generate the UAS-Ank2RNAi; UAS-HDAC4OE fly line for epistasis studies ... 139
Figure 3.47 Combination of Ank2 knockdown and HDAC4 overexpression in the developing brain causes additive effects to the mushroom body lobe phenotype 141
Figure 3.48 PCR Confirmation of EGFP insert into the Ank2-EGFP line of Drosophila .. 143
Figure 3.49 Western blotting showing Ank2-EGFP band 144
Figure 3.50 GST pull-down assay to investigate potential physical interaction between HDAC4 and Ank2 .. 146
Figure 3.51 Putative role of HDAC4 and Ank2 in the regulation of 24 hours courtship memory .. 149
Figure 4.1 Dendritic spines location and morphology 160
List of Figures

Figure 7.1 Physical map of the pUASTattB plasmid .. 229
Figure 7.2 Ank1-MYC DNA gels ... 230
Figure 7.3 Physical map of pUASTattB-Ank1-MYC vector .. 231
Figure 7.4 pGEX-2TK-HDAC4-GST DNA gels .. 231
Figure 7.5 Physical map of pGEX-2TK-HDAC4-GST vector 232
Figure 7.6 Protein gel showing IPTG induction of pGEX-2TK-HDAC4-GST 232
Figure 7.7 Standard curves from qPCR experiments .. 233
Figure 7.8 Assessment of RNAi knockdown via qPCR .. 234
List of Tables

Table 2.1 List of primary antibodies and respective dilutions used for immunohistochemistry...49
Table 2.2 List of secondary antibodies and dilutions used for immunohistochemistry...49
Table 2.3 Primers used for PCR and quantitative Real Time PCR experimental procedures ...50
Table 2.4 Primers used to confirm the identity of the Ank2-EGFP line..52
Table 2.5 Primers used for sequencing of the Ankyrin1-MYC construct............52
Table 2.6 Primers used for sequencing of pGEX-2TK-HDAC4-GST52
Table 2.7 Restriction endonucleases used for Ankyrin1-MYC subcloning..................55
Table 2.8 Primers used for Ankyrin1-MYC subcloning...55
Table 2.9 Restriction endonucleases used for pGEX-2TK-HDAC4-GST subcloning...57
Table 2.10 Primers used for amplification of HDAC4-GST..57
Table 2.11 Primary antibodies and corresponding dilutions used for western blot analyses ...62
Table 2.12 Secondary antibodies and corresponding dilutions used for western blot analyses..63
Table 3.1 Reads alignment percentages..76
Table 3.2 Genes whose transcripts are significantly altered in abundance by overexpression of HDAC4...79
Table 3.3 RNA expression levels in Drosophila head, eyes and brain of the genes transcriptionally regulated by HDAC4..80
Table 3.4 Genes excluded from further analysis after the rough eye phenotype screen.91
Table 3.5 Conserved interactions detected by the HDAC4-induced rough eye phenotype screen...91
Table 3.6 Novel interactions detected via the HDAC4-induced rough eye phenotype screen...92
Table 7.1 Drosophila melanogaster GAL4-driver lines and control strains used in this study ...219
Table 7.2 Drosophila melanogaster RNAi strains used in this study............................224
Table 7.3 Genes that resulted in additive effects in the HDAC4-induced rough eye phenotype screen..228
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>AIS</td>
<td>Axon initial segment</td>
</tr>
<tr>
<td>Ank1</td>
<td>Ankyrin1</td>
</tr>
<tr>
<td>Ank2</td>
<td>Ankyrin2</td>
</tr>
<tr>
<td>Ank3</td>
<td>Ankyrin3</td>
</tr>
<tr>
<td>ANK-B</td>
<td>Ankyrin B</td>
</tr>
<tr>
<td>ANK-G</td>
<td>Ankyrin G</td>
</tr>
<tr>
<td>ANK-R</td>
<td>Ankyrin R</td>
</tr>
<tr>
<td>Arc1</td>
<td>Activity-regulated cytoskeleton associated protein 1</td>
</tr>
<tr>
<td>Att</td>
<td>Arginine tolerance test</td>
</tr>
<tr>
<td>Aβ</td>
<td>Amyloid-beta</td>
</tr>
<tr>
<td>BDSC</td>
<td>Bloomington Drosophila Stock Centre</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>Ca++</td>
<td>Calcium</td>
</tr>
<tr>
<td>CaMK</td>
<td>Calcium/calmodulin-dependent kinase</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CI</td>
<td>Courtship index</td>
</tr>
<tr>
<td>CIP</td>
<td>Calf intestinal alkaline phosphatase</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>CRE</td>
<td>cAMP response element</td>
</tr>
<tr>
<td>CrebB</td>
<td>cAMP response element binding protein B</td>
</tr>
<tr>
<td>CS</td>
<td>Canton special</td>
</tr>
<tr>
<td>Cy</td>
<td>Curly</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DroID</td>
<td>Drosophila interactions database</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double stranded RNA</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>Elav</td>
<td>Embryonic lethal abnormal visual system</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>FasII</td>
<td>Fasciclin II</td>
</tr>
<tr>
<td>FLIM</td>
<td>Fluorescence lifetime imaging microscope</td>
</tr>
<tr>
<td>FPKM</td>
<td>Fragments per kilobase of transcript per million mapped</td>
</tr>
<tr>
<td>FRET</td>
<td>Fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GMR</td>
<td>Glass multimer reporter</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>H+</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone acetyltransferase</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>HDAC4</td>
<td>Histone deacetylase 4</td>
</tr>
<tr>
<td>HEK293</td>
<td>Human embryonic kidney 293 cells</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>INTACT</td>
<td>Isolation of nuclei tagged in specific cell types</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>K+</td>
<td>Potassium</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LI</td>
<td>Learning index</td>
</tr>
<tr>
<td>LoxP</td>
<td>Locus of X-over P1</td>
</tr>
<tr>
<td>LTM</td>
<td>Long-term memory</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Mef2</td>
<td>Myocyte enhancer factor 2</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MgCl2</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MI</td>
<td>Memory index</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium</td>
</tr>
<tr>
<td>NES</td>
<td>Nuclear export signal</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear localisation signal</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>NMDARs</td>
<td>N-Methyl-D-Aspartic acid receptors</td>
</tr>
<tr>
<td>Nrg</td>
<td>Neuroglian</td>
</tr>
<tr>
<td>OE</td>
<td>Overexpression</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein kinase A</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative Real Time PCR</td>
</tr>
<tr>
<td>Repo</td>
<td>Reversed polarity</td>
</tr>
<tr>
<td>RFP</td>
<td>Red fluorescent protein</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNaseq</td>
<td>RNA sequencing</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>Sb</td>
<td>Stubble</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate – polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>STM</td>
<td>Short-term memory</td>
</tr>
<tr>
<td>STRING</td>
<td>Search tool for the retrieval of interacting genes/proteins</td>
</tr>
<tr>
<td>SUMO</td>
<td>Small ubiquitin-like modifier</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian virus 40</td>
</tr>
<tr>
<td>TARGET</td>
<td>Temporal and regional gene expression targeting</td>
</tr>
<tr>
<td>Ts</td>
<td>Temperature sensitive</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activating sequence</td>
</tr>
<tr>
<td>Ubc9</td>
<td>Ubiquitin Carrier Protein 9</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VDRC</td>
<td>Vienna Drosophila Resource Centre</td>
</tr>
<tr>
<td>Wt</td>
<td>Wild-type</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>