Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
APPLICATIONS OF CELLULOSIC ION EXCHANGERS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University, New Zealand.

David Francis ELGAR

1983
ABSTRACT

Two possible commercial applications for a new range of ion exchanger, based on regenerated cellulose were investigated.

Equilibration studies showed that strongly basic (QAE) and strongly acidic (SP) derivatives can be equilibrated quicker and more easily than weakly basic (DEAE) and weakly acidic (CM) derivatives. This makes QAE and SP derivatives those of first choice, for use in commercial ion exchange processes.

The new QA and DE Cellulose derivatives were investigated for their possible use in the commercial purification of rennet. It was found that they were unable to bind rennet with sufficient capacity, within its pH stability limits, to be of any use in this process. This finding was surprising at first since these new ion exchangers showed improved BSA adsorption capacities over those currently employed for rennet purification. An explanation for this low capacity was proposed and verified with model studies on BSA adsorption. From these model studies it was also found that the new DE Cellulose has a more even distribution of charged groups resulting in sharper and more symmetrical peaks in the elution profiles of BSA, than those obtained from some DEAE cellulosics commercially available.

The new QA Cellulose was investigated for its possible use in the commercial extraction and purification of heparin, but was found to have insufficient density of charged groups to bind heparin at the high ionic strength used in some extraction processes. Several reaction schemes were devised and used to produce quaternary ammonium cellulose derivatives containing groups with two or three positively charged nitrogens as a means of increasing the charged density on the cellulose to match repeating negatively charged sulphate groups in heparin. The products obtained showed a dramatic increase in their binding strength for heparin but unfortunately there was a decrease in their capacity for heparin. None the less several potentially useful new cellulose derivatives for ion exchange chromatography can now be made.
I wish to thank my supervisor, Dr. J.S. Ayers for the help he has given me throughout the course of this study.

I would also like to thank all members of the Chemistry-Biochemistry Department for their help.

Thanks also is extended to Mrs Stewart, Susan Hewitt and Janine Atkins for their assistance in preparing this text and to Jenny Trow for her assistance in preparing the diagrams.
CONTENTS

Abstract
Acknowledgements
List of Contents
List of Figures

SECTION 1

INTRODUCTION
1.1 BACKGROUND
1.2 AIM OF THESIS

SECTION 2

EQUILIBRATION OF CELLULOSIC ION EXCHANGERS

2.1 INTRODUCTION
2.2 RESULTS AND DISCUSSION
2.2.1 Equilibration of DEAE Cellulose
2.2.2 Equilibration of QA Cellulose
2.2.3 Cation Exchangers: CM and SP Celluloses

SECTION 3

APPLICATION OF THE NEW MODIFIED ION EXCHANGERS TO THE PURIFICATION OF RENNET

3.1 INTRODUCTION
3.2 RESULTS AND DISCUSSION
3.3 pH PROFILE STUDIES
3.3.1 Basis of Method
3.3.2 Choice of Protein
3.3.3 Choice of Buffer
3.3.4 Scale of Operation
3.3.5 Results and Discussion
3.4 DISTRIBUTION OF CHARGED GROUPS
3.5 COLUMN CHROMATOGRAPHY OF BSA
3.5.1 Choice of Column Conditions
SECTION 4

ION EXCHANGE OF HEPARIN

4.1 INTRODUCTION

4.2 RESULTS AND DISCUSSION

4.2.1 QA Cellulose: It's Usefulness in the Heparin Process

4.2.2 Possible Methods of Increasing the Density of Charged Groups

4.2.3 Stability of QA and DQAE Celluloses

4.2.4 DQAP Cellulose - Heparin Binding Ability

4.2.5 Preparation and Use of 1,2-epoxypropyl trialkyl ammonium reagent

4.2.6 Stability of BDQ Cellulose

4.2.7 TQA Cellulose - Heparin Binding

4.2.8 Multiple Nitrogen Ligands

4.3 CONCLUSION

SECTION 5

EXPERIMENTAL

5.1 MATERIALS

5.2 PREPARATION OF CELLULOSE DERIVATIVES

5.2.1 Crosslinked Hydroxypropylated Regenerated Cellulose - The Modified Matrix

5.2.2 Modified DEAE Cellulose

5.2.3 Epoxypropylated Cellulose - The Activated Matrix

5.2.4 Derivatives from the Activated Matrix

5.2.5 Methylation of TMDAP, DAP and TA Cellulose (Schemes 3, 7, 8)

5.2.6 Preparation of Diquaternary Ammonium Cellulose (Schemes 4 and 5)
5.2.7 Preparation of Branched Diquaternary Ammonium Cellulose

5.2.8 Preparation of Ligands and Quaternising Reagents

5.2.9 Stability Tests - Quaternary Ammonium Cellulose

5.2.10 Determination of Ion Exchange Capacity (meq/g)

5.3 Equilibration of Cellulosic Ion Exchangers (Section 2)

5.3.1 Column Procedure

5.3.2 Pretreatment

5.3.3 Preparation of Buffer Solutions

5.4 Ion Exchange of Rennet (Section 3)

5.4.1 Column Chromatography

5.4.2 Assay of Rennet Activity

5.4.3 Preparation of Milk Substrate

5.4.4 Preparation of 0.01 mol/l CaCl₂

5.4.5 Rennet Capacity Tests

5.5 pH Profile Studies - BSA Capacity Test on DEAE Celluloses (Section 3)

5.5.1 Equilibration of DEAE Celluloses

5.5.2 Preparation of Buffer Solution

5.5.3 Preparation of 0.5% BSA Solution

5.5.4 pH Profile Procedure

5.6 Column Chromatography of BSA on DEAE Celluloses (Section 3)

5.6.1 Column Preparation

5.6.2 Preparation of 1% BSA Solutions

5.6.3 Column Procedure

5.6.4 Effect of Flow Rate on Resolution
5.7 ION EXCHANGE ON QUATERNARY AMMONIUM CELLULOSES (SECTION 4)

5.7.1 Column Chromatography 115
5.7.2 Assay of Heparin 116
5.7.3 Heparin Capacity Tests 116
5.7.4 BSA Capacity Tests 117

BIBLIOGRAPHY 118
viii.

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of Products Obtained from Regenerated Cellulose</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Titration Curves of DEAE Cellulose (A₂ Proton)</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Equilibration of DEAE Cellulose from Free Base Form</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Equilibration of DEAE Cellulose from the Hydrochloride form</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Titration of QA Cellulose in OH⁻ form</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Equilibration of QA Cellulose from the hydroxide form</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Equilibration of QA Cellulose from the Chloride form</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Equilibration of DEAE Cellulose from the free base and QA Cellulose from the hydroxide form</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Equilibration of CM and SP Celluloses</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Titration Curves of CM Cellulose (1030 CE2) and SP Cellulose (S40)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Beer's Law Plot</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>pH Profile of DEAE Celluloses in 0.025 M. NaCl</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>pH Profiles of DE Cellulose</td>
<td>42a</td>
</tr>
<tr>
<td>3.4</td>
<td>pH Profiles of A₂ Proton</td>
<td>42b</td>
</tr>
<tr>
<td>3.5</td>
<td>pH Profile of A₂ Proton and DE Cellulose in 0.05M NaCl</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>pH Profiles of Anion Exchangers, DEAE Celluloses</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Column Chromatography of BSA on DEAE Celluloses</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Column Chromatography of BSA on Whatman DE-52</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Column Chromatography of BSA on DE Cellulose (D11)</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Elution Profile of Heparin (10 mg) from QA Cellulose (5 ml)</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Elution Profile of Heparin (10 mg) from QA Cellulose (5 ml)</td>
<td>58</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Conductivity v Concentration of NaCl</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Elution Profile of Heparin (10 mg) from DQAP Cellulose (5 ml)</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Elution Profile of Heparin (10 mg) from DQAP Cellulose (5 ml)</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of Schemes 1-8</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>Titration Curve of TMDAP Cellulose</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Titration Curve of DQAP Cellulose made via Scheme 3</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>epoxide Content of the 1,2-epoxypropyl trialkylammonium chloride</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>Change in Epoxide Content in Methanolic Solution of 1,2-epoxypropyl trialkylammonium chloride with time</td>
<td>81</td>
</tr>
<tr>
<td>4.11</td>
<td>Titration Curve of BDQ Cellulose</td>
<td>85</td>
</tr>
<tr>
<td>4.12</td>
<td>Elution Profile of Heparin (10 mg) from TQA Cellulose (5 ml)</td>
<td>90</td>
</tr>
<tr>
<td>4.13</td>
<td>Elution Profile of Heparin (10 mg) from TQA Cellulose (5 ml)</td>
<td>91</td>
</tr>
<tr>
<td>4.14</td>
<td>Elution Profile of Heparin (10 mg) from QA, DQAP and TQA Cellulose (5 ml)</td>
<td>92</td>
</tr>
<tr>
<td>4.15</td>
<td>Elution Profile of BSA (50 mg) from QA Cellulose and DQAP Cellulose</td>
<td>93</td>
</tr>
<tr>
<td>4.16</td>
<td>Typical Titration Curve of TETA Cellulose</td>
<td>96</td>
</tr>
</tbody>
</table>