Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ASPECTS OF SEED TRANSFER WITHIN

A DIRECT DRILLING COULTER (OPENER).

A thesis presented in partial fulfilment
of the requirements for the degree
of Master of Agricultural Science
in Agricultural Mechanisation at
Massey University.

WILLIAM ROWLAN RITCHIE
1982
Table of Contents

ABSTRACT .. (i)
LIST OF TABLES .. (iii)
LIST OF FIGURES ... (v)
LIST OF APPENDICES ... (viii)
ACKNOWLEDGEMENTS ... (x)

1 INTRODUCTION .. 1

2 LITERATURE REVIEW.

2.1 Definitions .. 4

2.2 Advantages and disadvantages of zero tillage seedbeds ... 5

2.2.1 Soil moisture, temperature, infiltration and erosion ... 5

2.2.2 Weed control ... 7

2.2.3 Soil structure .. 9

2.2.4 General aspects of the zero tillage system .. 10

2.3 Equipment for direct drilling ... 12

2.4 Precision seed placement ... 16

2.4.1 Crop factors ... 16

2.4.2 Conventional precision spacing seed drills .. 18

2.4.3 Precision seed spacing direct drilling equipment .. 22

2.5 Assessment of seed spacing accuracy .. 23

3 MATERIALS AND METHODS.

3.1 Selection of a direct drilling coulter .. 25

3.2 Selection of a precision seed metering mechanism ... 26

3.3 Seed transfer options .. 28

3.3.1 Seeder/coulter combination on a common axle .. 28

3.3.2 Seed transfer through a tube .. 29

3.3.3 Air-flow-assisted tube transfer ... 29

3.3.4 Electrostatic charging of seeds for tube transfer .. 30

3.3.5 Fluid drilling ... 31

3.3.6 Wheel and belt transfer systems .. 31

3.4 Experimentation and development .. 33

3.4.1 Objective (a) - Experimental drill evaluation ... 36

3.4.1.1 Experiment a/1 (Laboratory experiment) .. 36

3.4.1.2 Experiments a/2 and a/3 (Field experiments) .. 41

3.4.2 Objective (b) - Evaluation of simple seed transfer alternatives 49

3.4.2.1 Experiment b/1 (Seed-tube transfer) .. 49

3.4.3 Development (i) - An experimental technique for assessing seeder/transfer mechanism interaction ... 54

3.4.4 Objective (c) - Evaluation of seeder release characteristics 58

3.4.4.1 Experiment c/1 (Seed cell release) ... 58

3.4.4.2 Experiment c/2 (Seed deflection mechanisms) .. 60

3.4.5 Development (ii) "Nodet Gougis" seeder modifications ... 62
3.4.6 Objective (d) - Assessment of modified equipment.

3.4.6.1 Experiment d/1 (Modified seeder/tube transfer performance testing).

3.4.6.2 Experiment d/2 (Modified seeder/tube transfer/coulter performance testing).

3.4.7 Development (iii) - Incorporation of a tube transfer system with a modified "Nodet Gougis" seeder and a chisel coulter.

3.4.8 Measurements.

4 RESULTS AND DISCUSSION.

4.1 Objective (a) - Experimental drill evaluation.

4.1.1 Experiment a/1 (Laboratory experiment).

4.1.2 Experiments a/2 and a/3 (Field experiments).

4.2 Objective (b) - Evaluation of simple seed transfer alternatives.

4.2.1 Experiment b/1 (Seed-tube transfer).

4.3 Objective (c) - Evaluation of seeder release characteristics.

4.3.1 Experiment c/1 (Seed cell release).

4.3.2 Experiment c/2 (Seed deflection mechanisms).

4.4 Objective (d) - Assessment of modified equipment.

4.4.1 Experiment d/1 (Modified seeder/tube transfer performance testing).

4.4.2 Experiment d/2 (Modified seeder/tube transfer/coulter unit performance testing).

5 SUMMARY AND CONCLUSIONS.

6 BIBLIOGRAPHY.

7 PERSONAL COMMUNICATIONS.

8 APPENDICES.
ABSTRACT.

A number of laboratory and field experiments were conducted in order to identify and quantify seed and seedling spacing variations produced by an experimental direct drill. Seed contact with both stationary and moving components of the coulter assembly was considered to contribute to the increased variability of seed spacing that resulted from the positioning of a chisel direct drilling coulter beneath a "Nodet Gougis" seed selection mechanism.

Alternatives for transferring the seeds from the seed selection mechanism to the soil were considered. The simplest of these alternatives, a seed-transfer tube, was tested in a number of different shapes and positions. It was found that the seeder required modifications to its release characteristics in order to satisfactorily incorporate the tube transfer system. A number of deflector plates were fitted to the seeder to control seed release trajectory. A 40 degree seed deflector plate was found to produce a seed path that was most compatible with a straight vertical seed-transfer tube.

A video recording technique was used to assess the effects of seeder modifications on seed release trajectory.

The modified seeder and the tube transfer system were combined with the chisel direct drilling coulter, and seed spacing performance was retested. Seed spacing variability was found to be considerably less than with the original experimental drill in the laboratory, although field performance was not improved to the same extent. It was considered that this effect
may have been attributable to the effects of soil flow with the direct drilling coulter and the manner with which the seed was released into the soil, which differed with the tube system compared with the unmodified coulter tested initially.
1. Effects of coulter type, ground speed and seed type on eveness of spacing by a "Nodet Gougia" seeder 75
2. Effect of seed passage through a chisel coulter on seed spacing .. 76
3. Effect of ground speed on seed spacing performance by a precision seeder and direct drilling coulter 76
4. Effect of seed type on seed spacing performance by a precision seeder and direct drilling coulter 77
5. Effect of seed type, coulter blade wing angle and a coulter disc scraper on seedling spacing using an experimental direct drilling unit in pasture 81
6. Effect of seed type, coulter blade wing angle and a coulter disc scraper on seedling spacing using an experimental direct drilling unit in barley stubble 82
7. Effect of coulter blade wing angle on seedling spacing variation using an experimental direct drilling unit in pasture .. 84
8. Effect of coulter blade wing angle on seedling spacing variation using an experimental direct drilling unit in barley stubble .. 84
9. Effect of seed type on seedling spacing variation using an experimental direct drilling unit in pasture ... 85
10. Effect of seed type on seedling spacing variation using an experimental direct drilling unit in barley stubble ... 85
11. Effect of a coulter disc scraper on seedling spacing variation using an experimental direct drilling unit in pasture.................................86
12. Effect of a coulter disc scraper on seedling spacing variation using an experimental direct drilling unit in barley stubble.................................86
13. Effect of seed type, coulter blade wing angle and a coulter disc scraper on lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in pasture........87
14. Effect of seed type, coulter blade wing angle and a coulter disc scraper on lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in barley stubble.....88
15. Effect of seed type on the lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in pasture........89
16. Effect of seed type on the lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in barley stubble.....89
17. Effect of coulter blade wing angle on the lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in pasture.................................91
18. Effect of coulter blade wing angle on the lateral displacement of seedlings from the seed groove centre using an experimental direct drilling unit in barley stubble.................................91
19. Effect of "seed" type on seeder and transfer tube seed spacing performance with a "Nodet Gougis" seeder unit.................................95
20. Effect of tube transfer configuration on seed spacing performance with a "Nodet Gougis" seeder..............95
21. Effect of seed transfer tube shape on spacing performance of a "Nodet Gougis" seeder.........................98
22. Comparisons of free seed drop trajectory of lupin seeds released from "Nodet Gougis" and "Hassia" seeders..............................102
23. Effect of seed selection plates fitted to a "Nodet Gougis" seeder mechanism on lupin seed release trajectory at two seed selection plate speeds...........104
24. Effect of seed deflection modifications and different seed transfer tubes on lupin seed spacing variation with a "Nodet Gougis" seeder.......................112
25. Lupin seed spacing variation with a modified "Nodet Gougis" seeder/tube transfer/chisel coulter test unit as measured in the laboratory.................................116
26. Lupin seed spacing variation with a modified "Nodet Gougis" seeder/tube transfer/chisel coulter test unit, laboratory/field comparison.........................116
LIST OF FIGURES.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experimentation and development</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>Positioning of the conventional "Nodet Gougis" seeder above the greased tray (experiment a/1)</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Experimental direct drilling unit modifications for laboratory experiment a/1</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Redeveloped chisel coulter blade</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Redeveloped chisel coulter with disc scraper modification</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Plot layout of field experiment - Pasture (experiment a/2)</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Plot layout of field experiment - Crop stubble (experiment a/3)</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>Seed-transfer tube configuration</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>Attachment of the seed-transfer tube to the "Nodet Gougis" seeder</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>Video recording apparatus</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>Video monitor reference lines</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Variable speed seeder drive mechanism</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>Seed deflector plate modifications to the "Nodet Gougis" seeder</td>
<td>63</td>
</tr>
<tr>
<td>14</td>
<td>Seed deflector plate configuration</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>Modified seeder/tube transfer/direct drilling coulter unit</td>
<td>70</td>
</tr>
<tr>
<td>16</td>
<td>Modified seeder/tube transfer/direct drilling coulter unit operating in a sprayed pasture plot</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>Modified seeder/tube transfer/direct drilling coulter unit depth control wheel</td>
<td>71</td>
</tr>
</tbody>
</table>
18. Lateral seed placement variation with a "Nodet Gougis"
 seeder with (right) and without (left) a straight
 vertical seed-transfer tube.97
19. Seed trajectory distribution from "Nodet Gougis" and
 "Hassia" seeders.107
20. Seed trajectory distribution from a "Nodet Gougis"
 seeder - peripheral plate speed = 0.12 m.sec⁻¹108
21. Seed trajectory distribution from a "Nodet Gougis"
 seeder - peripheral plate speed = 0.36 m.sec⁻¹109
22. Seed path from a "Nodet Gougis" seeder fitted with
 a straight deflector plate.110
23. Seed path from a "Nodet Gougis" seeder fitted with
 a 20° deflector plate.110
24. Seed path from a "Nodet Gougis" seeder fitted with
 a 40° deflector plate.111
25. Comparison of lupin seed spacing variation114
LIST OF APPENDICES.

1. Seed spacing variation with a "Nodet Gougis" seeder on the greased tray - Raw data...........137
2. Seedling spacing variation with an experimental direct drilling unit in pasture - Raw data........138
3. Seedling spacing variation with an experimental direct drilling unit in barley stubble - Raw data........139
4. Seedling displacement from the seed groove centre with an experimental direct drilling unit in pasture - Raw data...140
5. Seedling displacement from the seed groove centre with an experimental direct drilling unit in barley stubble - Raw data...141
6. Percentage seedling establishment in experiments a/2 and a/3..142
7. Seed/seedling spacing with an experimental direct drilling unit - comparison of laboratory and field experiments...143
8. "Seed" spacing variation with a "Nodet Gougis" seeder with different seed transfer tubes - Raw data........144
9. Lupin seed spacing variation with a "Nodet Gougis" seeder with different seed deflection plates and seed-transfer tubes - Raw data.................................145
10. Lupin seed spacing variation with a modified "Nodet Gougis" seeder/tube transfer/chisel coulter test unit - Raw data...146
11. Lupin seed/seedling spacing variation with a modified seeder/tube transfer/chisel coulter test unit at 6.4 km.hr$^{-1}$ - Raw data......................... 147

12. Seed/seedling numbers in experiment d/2............... 148
I am sincerely grateful to the following individuals and organisations for their assistance and interest throughout the course of this project:

To Dr John Baker, Reader in Agricultural Machinery, Agronomy Department, Massey University: For patient hours of supervision, guidance, criticism and encouragement and for his initiative and expertise in this field.

To R.C. MacDonald Ltd and Development Finance Corporation: For financial assistance with research expenses.

To academic, technical and clerical staff members of the Agronomy Department, Massey University: For their various contributions to this project, especially Julie Vickers; for many patient hours during the typing and compiling of this thesis.

To Mr G.C. Arnold, Mathematics and Statistics Department, Massey University: For understanding and guidance with statistical aspects.

To C.B. Norwood Ltd: For the loan of equipment.

To Mr T.I. Cox, M.A.F. Horticultural Research Centre, Levin: For co-operation and assistance.

To Mr T. Hedderwick, Forestry Research Institute, Rotorua: For information and discussion.

To Central Photographic Unit, Massey University: For technical assistance with photography and presentation.

Finally, to my wife, Mary, and to my family and friends: For their continuing encouragement, interest and understanding.