ASPECTS OF PROTEOLYSIS IN CHEESE

A Thesis presented in partial fulfilment of the requirements
for the degree
of Master of Philosophy
in Food Technology at Massey University

Christina June Coker

1994
ABSTRACT

The purpose of the present study was to elaborate methods for the detailed examination of proteolysis pathways in cheese (reviewed in Chapter 1) and to demonstrate their usefulness. Many techniques, including solvent fractionation, chromatographic separation and electrophoresis have been used previously and were revisited in this study.

Gel electrophoresis can be a powerful technique and was examined in detail. The methods investigated were: 1) a slab gel system using the apparatus of the E-C Apparatus Corporation and a polyacrylamide gel in a Tris-EDTA-borate buffer at alkaline pH and containing urea; 2) a mini-slab gel system using the Bio-Rad mini-Protean II apparatus, a polyacrylamide stacking and resolving gel with a discontinuous (Tris-chloride/Tris-EDTA-borate) buffer system that contained urea; 3) a mini-slab gel system using the Bio-Rad mini-Protean II apparatus, a polyacrylamide stacking and resolving gel and acetic acid-ammonium acetate buffers at acidic pH that contained urea; 4) a mini-slab gel system using the Bio-Rad mini-Protean II apparatus, a polyacrylamide gel with a stacking and resolving gel in Tris-HCl buffers containing sodium dodecyl sulphate (SDS) and a Tris-chloride-glycine electrode buffer.

The mini-slab alkaline urea polyacrylamide gel electrophoresis (PAGE) method was considered to be the most suitable for monitoring the loss of intact casein during cheese ripening. However, SDS-PAGE gave good resolution of para-k-casein, b-lactoglobulin and a-lactalbumin and it could therefore be used for the analysis of cheese in which whey proteins have been incorporated or for monitoring the breakdown of para-k-casein (Chapter 4) in cheese. Two-dimensional PAGE revealed the presence of more bands than were visible using any single method of electrophoresis. Traces of protein were found to lie beneath the a11-casein band and this explained why, even after considerable proteolysis, some a11-casein appeared to remain.

Storing cheese samples in such a way that there is a minimum of further change was examined using several different storage methods and temperatures, including storage as: freeze-dried powder at 4°C in the dark, frozen at -9, -16, -35, -75 and -100°C, and dissolved in 6 M urea solution and stored at 4 and -16°C. The trial ran for 6 months and involved the multiple sampling and detailed analysis of three Cheddar cheeses by reversed phase fast protein liquid chromatography (RP-FPLC) for the water-soluble fraction (WSF) and alkaline urea-PAGE for the protein fraction.
None of the methods used to store the cheese samples was completely satisfactory. Cheese stored at temperatures of -9 and -16°C was unstable, with proteolysis discernible after 66 days. Storage of cheese samples at these temperatures is, therefore, not recommended. Cheese stored at temperatures of -35, -75 and -100°C was unstable after 94 days, although the samples stored at -100°C were more stable. This lack of stability probably arose during thawing as well as during storage of the frozen cheese samples. Storage of freeze-dried samples at 4°C in the dark was equivalent to storing the frozen cheese at -100°C. Storage of samples in alkaline urea sample buffer was better at -16°C than at 4°C but should be for no longer than 1 month.

An indication of the differences to be expected within the normal range of Cheddar cheese was determined using three very similar Cheddar cheeses ripened at 5 and 13°C (Chapter 3, part II). Cheeses ripened at 5°C for 6 months were similar to those ripened at 13°C for 2 months and the proteolytic pathways appeared to the same at both temperatures.

The proteolytic pathways in Cheddar and Mozzarella cheeses, manufactured according to standard protocols, ripened at 13°C and sampled at regular intervals over a six month period were examined using a variety of techniques: total nitrogen (TN), non-protein nitrogen (NPN), water-soluble nitrogen (WSN), alkaline urea-PAGE, low molecular weight (LMW) SDS-PAGE, RP-FPLC and size exclusion high performance liquid chromatography (SE-HPLC). The TN and NPN analyses were done at the time of sampling whereas the other assays were done on samples that had been stored at <-75°C so that they could be analysed simultaneously.

The increase in WSN and NPN was greater in Cheddar cheese than in Mozzarella cheese and reflected the greater microbial enzyme activity in this cheese type.

Alkaline urea-PAGE revealed that there was more α_{s1}-casein hydrolysis (with the formation of α_{s1}-casein-I) in Cheddar cheese than in Mozzarella cheese, indicating that rennet activity was greater in Cheddar cheese. The presence of peptides believed to be β-I- (β-casein f1-189/192) and β-II-casein (β-casein f1-165) indicated that rennet may have hydrolysed β-casein. The amount of β-casein hydrolysis (and γ-casein formation) was greater in Mozzarella cheese, reflecting the greater plasmin activity in this cheese type. Both LMW SDS-PAGE and SE-HPLC of the whole cheese provided little additional information.

Examination of the WSF of each cheese by PAGE analysis showed that many of the
larger peptides may have been present in both cheese types. The different concentrations of these peptides in each cheese type were consistent with different rennet and plasmin activities and suggested that they may have been products of these enzymes. RP-FPLC and SE-HPLC analysis of the WSF of Cheddar cheese revealed that, although the larger peptides continued to accumulate during ripening, there was also a large increase in the amount of small peptides and amino acids in the cheese. In the Mozzarella cheese, the larger peptides accumulated and there was little evidence of their further hydrolysis to small peptides and amino acids.

The present studies indicate that SE-HPLC using a Toyo-Soda SW 2000 column and a 36% acetonitrile/0.1% trifluoroacetic acid solvent system is a promising new technique that may be useful in determining cheese type and maturity and in relating changes in the molecular weight distribution of the peptides to changes in the textural, functional and flavour characteristics of cheese.

It was concluded that the results are consistent with the concept that differences in the manufacture of Cheddar and Mozzarella cheeses result in the formation of two cheeses, each with different amounts of similar enzymes (rennet, plasmin, and the enzymes of the starter and non-starter lactic acid bacteria), and that these differences in enzyme concentration, combined with the modifying effect of pH, temperature, moisture content and S/M, result in different enzyme activities and patterns of proteolysis in the two types of cheese and these, in turn, result in cheeses with different functional properties.
ACKNOWLEDGEMENTS

I would like to thank Drs Mike Boland (Division Manager, New Zealand Dairy Research Institute (NZDRI)), Jeremy Hill (Section Manager, Food Science Section, NZDRI) and Lawrie Creamer, my NZDRI supervisor, for the opportunity to pursue this course of study. I am particularly grateful to Dr Creamer for his guidance and countless discussions on the results of this work.

I would like to thank Dr Terry Thomas, Craig Honoré, Keith Johnston and the Cheese Division of the New Zealand Dairy Board for the funding for this study.

I am very grateful to Dr Harjinder Singh, my Massey University supervisor, for planning a very useful course of study as well as for his guidance and useful discussion.

I wish to thank Professor Ray Winger (Professor of Food Technology, Massey University) for very helpful discussion on the problems associated with frozen storage of food products and for supplying literature related to this topic.

I would also like to thank Dr Graham Pritchard (Department of Biochemistry, Massey University) for very kindly supplying literature related to proteolysis in cheese.

I wish to thank Dr Paul McSweeney for kindly supplying a copy of his Ph.D thesis and Tanoj Singh for supplying extracts from his Ph.D thesis.

I would like to thank Drs Derek Knighton, Jeremy Hill, Rose Motion, Jeff Plowman, Don Otter, Kevin Pearce and Tim Coolbear of the NZDRI for helpful discussion and advice.

Special thanks must go to Mr Richard Burr for his patient instruction on the use of the FPLC and for his assistance with mechanical problems experienced during its operation.

I must also thank Mr Steve Boleyn for providing many of the cheese samples and Dr Philip Watkinson for supplying the cheese for the cheese ripening study.

I would like to thank Ms Marlene Tsao for her assistance with the seemingly endless weighing of cheese and with some of the gel electrophoresis in the cheese storage trial.

I would like to express my thanks to Ms Jan Wilkinson for analysing my samples on the HPLC (dedicated to producing molecular weight profiles) that she operated.

Thanks must also go to Mr Paul Le Ceve for developing the photographs and for coming to the rescue with his photographic expertise when a couple of the critical photographs were overexposed.

Thanks also to Dr M Reid, Campbell Microanalytical Laboratory, Department of Chemistry, University of Otago for Nitrogen analyses and to Errol Conaghan and the Analytical Chemistry Section of the NZDRI for providing the chemical analyses of the cheese.

Lastly, a very special thankyou must go to Neil and my children, Nicholas, Michael, Justin and Timothy for their tolerance, which was sorely tested, and for their support.
TABLE OF CONTENTS

CHAPTER 1 PROTEOLYSIS IN CHEESE: A GENERAL REVIEW

1. **INTRODUCTION** .. 12
 1.1 **CHEESE MANUFACTURE** 12

2. **THE PROTEOLYTIC ENZYMES IN CHEESE** 14
 2.1 **THE COAGULANT ENZYMES** 15
 2.1.1 Animal Rennet ... 15
 2.1.2 Recombinant Rennet 15
 2.1.3 Microbial Rennet .. 16
 2.1.4 Rennet as a Coagulant 17
 2.1.5 Rennet and Proteolysis 20
 2.2 **PLASMIN** .. 29
 2.2.1 Plasmin and Proteolysis of Milk Proteins 29
 2.2.2 Plasmin and Proteolysis in Cheese 36
 2.3 **ENZYMES OF STARTER AND NON-STARTER ORGANISMS** 39
 2.3.1 Enzymes of Starter Organisms 39
 2.3.2 Enzymes of Secondary Microflora 44
 2.3.3 Non-starter Lactic Acid Bacteria in Cheese 45
 2.3.4 Psychrotrophic Bacteria in Cheese 47

3. **TEXTURE AND FLAVOUR DEVELOPMENT IN CHEESE** 48
 3.1 **PROTEOLYSIS AND TEXTURE** 50
 3.2 **PROTEOLYSIS AND FLAVOUR** 51
 3.2.1 Bitterness in Cheese 53

4. **CHEESE VARIETIES** .. 54
 4.1 **PROTEOLYSIS IN CHEDDAR CHEESE** 54
 4.2 **PROTEOLYSIS IN DUTCH-TYPE CHEESE** 56
 4.3 **PROTEOLYSIS IN SWISS-TYPE CHEESES** 58
 4.4 **PROTEOLYSIS IN MOZZARELLA CHEESE** 59
 4.5 **PROTEOLYSIS IN CAMEMBERT AND BRIE CHEESES** 62
 4.6 **PROTEOLYSIS IN BLUE CHEESE** 64

5. **CONCLUSION** .. 66

6. **BIBLIOGRAPHY** .. 67
CHAPTER 2 GEL ELECTROPHORESIS: A COMPARISON OF METHODS SELECTED TO STUDY PROTEOLYSIS IN CHEESE

1 INTRODUCTION ... 85

2 LITERATURE REVIEW 87
 2.1 GEL ELECTROPHORESIS 87
 2.1.1 Polyacrylamide Gel Electrophoresis in Alkaline Conditions ... 87
 2.1.2 Polyacrylamide Gel Electrophoresis in Acid Conditions ... 90
 2.1.3 SDS Polyacrylamide Gel Electrophoresis 90
 2.1.4 Two-Dimensional Gel Electrophoresis 92
 2.2 SAMPLE PREPARATION 93
 2.3 STAINING .. 93

3 OBJECTIVE ... 95

4 MATERIALS AND METHODS 96

5 RESULTS .. 104

6 DISCUSSION .. 115

7 CONCLUSION .. 117

8 BIBLIOGRAPHY .. 118

CHAPTER 3 I. OPTIMUM STORAGE CONDITIONS FOR CHEDDAR CHEESE SAMPLES DESTINED FOR QUANTITATIVE PEPTIDE AND PROTEIN ANALYSIS and II. THE EFFECT OF STORAGE TEMPERATURE ON PROTEOLYSIS IN CHEDDAR CHEESE

1 INTRODUCTION .. 127

2 OBJECTIVES .. 129

3 EXPERIMENTAL PROCEDURE 130
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MATERIALS AND METHODS</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>RESULTS</td>
<td>134</td>
</tr>
<tr>
<td>6</td>
<td>DISCUSSION</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSION</td>
<td>158</td>
</tr>
<tr>
<td>8</td>
<td>BIBLIOGRAPHY</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 4 A COMPARISON OF PROTEOLYSIS IN CHEDDAR AND MOZZARELLA CHEESES USING DIFFERENT METHODS OF ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>165</td>
</tr>
<tr>
<td>2</td>
<td>OBJECTIVE</td>
<td>166</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>167</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS</td>
<td>174</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>204</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSIONS</td>
<td>214</td>
</tr>
<tr>
<td>7</td>
<td>BIBLIOGRAPHY</td>
<td>216</td>
</tr>
</tbody>
</table>
FIGURES

1.1 Breakdown of casein during cheese ripening: involvement of proteinases from various sources .. 14
1.2 Chymosin action on α_{t}-casein .. 23
1.3 Chymosin action on β-casein .. 26
1.4 Chymosin action on α_2-casein .. 28
1.5 Plasmin action on β-casein .. 31
1.6 Plasmin action on α_2-casein .. 33
1.7 Plasmin action on α_t-casein .. 35
1.8 Classes of proteinases .. 41
1.9 Designation of peptidases .. 41
1.10 Action of dipeptidyl peptidase and peptidyl peptidase 42
1.11 The interrelationship between proteolytic systems and amino acid transport systems in lactic acid bacteria .. 42
1.12 Classification of traditionally manufactured cheese varieties by their characteristic ranges of ratio of calcium/solid-non-fat and pH .. 49
1.13 Diagrammatic representation of the effect of pH and calcium on cheese microstructure and texture .. 49
1.14 General pathways of amino acid catabolism in cheese .. 52
1.15 Sequence of proteolysis in Camembert cheese .. 64

2.1 Polyacrylamide gel electrophoresis patterns of the different cheese varieties on the large alkaline urea (slab) gel .. 104
2.2 Polyacrylamide gel electrophoresis patterns of the different cheese varieties on the alkaline urea mini-slab gel .. 105
2.3A Polyacrylamide gel electrophoresis patterns of the different cheese varieties on the acid urea mini-slab gel .. 106
2.3B Acid urea polyacrylamide gel electrophoresis. Acid versus alkaline urea sample buffer. Mercaptoethanol versus no mercaptoethanol .. 109
2.4 Two-dimensional polyacrylamide gel electrophoresis. "Mature" Cheddar cheese electrophoresed on an alkaline urea gel for the first dimension and an acid urea gel for the second dimension .. 110
2.5 Two-dimensional polyacrylamide gel electrophoresis. Feta cheese sample electrophoresed on an alkaline urea gel for the first dimension and an acid urea gel for the second dimension .. 111
2.6 Polyacrylamide gel electrophoresis patterns of the different cheese varieties on the "low molecular weight" SDS mini-slab gel .. 112
2.7 Two-dimensional polyacrylamide gel electrophoresis. "Mature" Cheddar cheese electrophoresed on an alkaline urea gel for the first dimension and a LMW SDS gel for the second dimension ... 113

2.8 Two-dimensional polyacrylamide gel electrophoresis. Feta cheese electrophoresed on an alkaline urea gel for the first dimension and a LMW SDS gel for the second dimension ... 114

3.1 The effect of storage temperature (-100 to -9°C) on the ratio of \(\alpha_{s1} \)- to \(\beta \)-casein in Cheddar cheese from vats 1, 2 and 3 ... 135

3.2 The effect of storage temperature (-100 to -9°C) on the ratio of \(\alpha_{s1} \)-casein to \(\alpha_{s1} \)-casein-I in Cheddar cheese from vats 1, 2 and 3 ... 136

3.3 RP-FPLC profile of a mixture of amino acids. The absorbance was monitored at 214 and 280 nm ... 138

3.4 RP-FPLC. The effect of storage temperature on the peptide profiles of the WSF of Cheddar cheese from vats 1, 2 and 3 ... 139

3.5 The effect of storage temperature (-100 to -9°C) on the amount of water-soluble peptide and amino acid material with an absorbance at 214 nm ... 140

3.6 RP-FPLC. The effect of storage temperature (-100 to -9°C) on the amount of material, that eluted between the tryptophan peak and 75 min ... 141

3.7 The effect of storage time on the ratio of \(\alpha_{s1} \)- to \(\beta \)-casein in freeze-dried Cheddar cheese samples from vats 1, 2 and 3 ... 143

3.8 The effect of storage of freeze-dried cheese samples on the peptide profiles obtained by RP-FPLC analysis of the WSF of Cheddar cheese from vats 1, 2 and 3 ... 144

3.9 The effect of storage of Cheddar cheese samples from vats 1, 2 and 3 in alkaline urea sample buffer on the urea-PAGE patterns of the caseins ... 145

3.10 The effect of storage of Cheddar cheese samples from vats 1, 2 and 3 in alkaline urea sample buffer on the apparent ratio of \(\alpha_{s1} \)- to \(\beta \)-casein ... 146

3.11 The effect of ripening temperature on proteolysis in Cheddar cheese from vats 1, 2 and 3 ... 149

3.12 The effect of ripening temperature on the RP-FPLC profiles of the WSF of Cheddar cheese from vats 1, 2 and 3 ... 150

4.1 Changes in WSN and NPN (expressed as a percentage of the TN) in Cheddar and Mozzarella cheeses during maturation at 13°C ... 176

4.2 Alkaline urea-PAGE. Casein degradation in (A) Cheddar cheese and (B) Mozzarella cheese ripened at 13°C ... 178

4.3 Trends in \(\alpha_{s1} \)- and \(\beta \)-casein breakdown in Cheddar and Mozzarella cheeses ripened at 13°C, and sampled after 1, 14, 28, 63, 91, 133 and 182 days ... 179
4.4 Proteolysis monitored by LMW SDS-PAGE in (A) Cheddar cheese and (B) Mozzarella cheese ripened at 13°C ... 181
4.5 The increase in dye intensity in the region of para-\(\kappa\)-casein in Cheddar and Mozzarella cheeses ripened at 13°C ... 182
4.6 Alkaline urea-PAGE. The water-insoluble fraction of (A) Cheddar cheese and (B) Mozzarella cheese stored at 13°C ... 184
4.7 LMW SDS-PAGE. The water-insoluble fraction of (A) Cheddar cheese and (B) Mozzarella cheese stored at 13°C ... 185
4.8 Alkaline urea-PAGE. The WSF of (A) Cheddar cheese and (B) Mozzarella cheese stored at 13°C ... 188
4.9 LMW SDS-PAGE. The WSF of (A) Cheddar cheese and (B) Mozzarella cheese stored at 13°C ... 190
4.10 RP-FPLC of the WSF of Cheddar and Mozzarella cheeses after 1, 14, 28, 63, 91, 133 and 182 days maturation ... 194
4.11 RP-FPLC. The total accumulated peak area, measured at 214 and 280 nm, for Cheddar and Mozzarella cheeses after 1, 14, 28, 63, 91, 133 and 182 days 195
4.12 RP-FPLC. The absorbance at 214 nm of three peaks corresponding to tyrosine, phenylalanine and tryptophan in Cheddar and Mozzarella cheeses 196
4.13 SE-HPLC calibration curve of standards ... 198
4.14 SE-HPLC of the urea-soluble fraction of Cheddar and Mozzarella cheeses ... 200
4.15 SE-HPLC of the WSF of Cheddar and Mozzarella cheeses ... 203

TABLES

3.1 RP-FPLC retention times of amino acid standards ... 137
3.2 The effect of freezing at different temperatures and freeze-drying on the pH of milk, cheese whey, alkaline urea sample buffer and the WSF of cheese 147
3.3 The effect of storage temperature (5 and 13°C) on the amount of material that eluted between tryptophan and 75 min ... 151
4.1 The compositional analyses of the Cheddar and Mozzarella cheeses 174
4.2 Alkaline urea-PAGE. The relative mobilities of the bands in the WSF of Cheddar and Mozzarella cheeses ... 189
4.3 LMW SDS-PAGE. The relative mobilities of the bands in the WSF of Cheddar and Mozzarella cheeses ... 191