AN AGRO-ECONOMIC APPROACH
TO THE
OPTIMAL ALLOCATION OF LAND
TO
RUBBER, OIL PALM & COCOA

A thesis presented in partial fulfillment of the requirements for
the degree of MAgrSc in Agricultural Economics at Massey University.

Amitabha Guha

December 1990
ABSTRACT

This study details the formulation of a dynamic mathematical programming model for obtaining optimal crop-soil allocation plans for perennial crops. The hypothetical model was built to complement soil survey studies in making land-use recommendations for Malaysian plantations.

The intertemporal linear programming model was constructed to solve the problem of allocating Rubber, Oil Palm and Cocoa to various soil types encountered in Malaysia over a three year land allocation period in such a manner so as to maximize the present value of annual after-tax net income over the crops optimal rotation age.

The framework also treats alternative goals by requiring basic consumption needs be met, and permits borrowings (upto a prespecified limit) and lendings to cover annual negative and positive annual cash balances respectively.

Data input-output coefficients used in model formulation reflect the agro-economic environment in which Malaysian plantations today operate. However, commodity prices forecasted by the FAO for the commodities concerned were used in the valuation of planted assets beyond the three year land allocation model horizon.

The results obtained on computation provide detailed planting plans with respect to the amount of a particular soil type that should be allocated to a crop and the year in which the planting(s) should be carried out. In addition, the amount of labour, fertilizer and capital goods required in any of the three years within the horizon is generated, as is the amount of crop produced and sold. Also, annual income and expenses are automatically allocated to the various tax-brackets in such a manner as to minimize cash lost through taxation.

By making multiple optimization runs, the sensitivity of the optimal plan to changes in the various parameters was also examined.
Title of thesis:

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ... months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ... months.

Signed

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS DATE
An Agro-Economic Approach to the Optimal Allocation of Land to Rubber, Oil Palm & Cocoa.

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-4</td>
</tr>
<tr>
<td>1.1</td>
<td>- Objective of Study</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>- Scope of Study</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>- Outline of Study</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>METHOD OF ANALYSIS</td>
<td>5-10</td>
</tr>
<tr>
<td>2.1</td>
<td>- Capital Budgeting, Marginal Analysis & Mathematical Programming</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>- A Comparison between Mathematical Programming & Marginal Analysis in Optimizing Objectives that are subject to constraints</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>- Assumptions made in Linear Programming Models</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>- Characteristics of Intertemporal (Dynamic) Linear Programming Models</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>- Risk Considerations</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>- Literature Review</td>
<td></td>
</tr>
</tbody>
</table>
THEORETICAL FRAMEWORK

3.1 - Features of Linear Programming Models
 3.1.1 - The Static LP Model
 3.1.2 - The Intertemporal LP Model

3.2 - Structure of the Perennial Crop Land Allocation Model
 3.2.1 - The Planning Horizon
 3.2.2 - The Optimal Perennial Crop Replacement Time
 3.2.3 - The Objective Function
 3.2.4 - The Activity Columns
 3.2.5 - The Resource Constraints and Reconciliation Rows

CROP PRODUCTION

4.1 - Agro-Climatic Production Factors
 4.1.1 - Climate
 4.1.2 - Soils
 4.1.3 - Crops

MARKETS

5.1 - World Commodity Market Outlook

MODEL FORMULATION

6.1 - Model Definition

6.2 - Input-Output Coefficients in the Matrix:
 6.1.1 - The Objective Function
 6.1.2 - The Constraints
 6.1.3 - The Activities

6.3 - The Formulated Matrix
7 RESULTS & ANALYSIS

7.1 - Results

7.11 - The Optimal Plan
7.12 - Shadow Prices

7.2 - Sensitivity Analysis

8 DISCUSSION

8.1 - An Assessment of the Models Achievements

8.2 - An Assessment of the Models Limitations

9 CONCLUSION

References

APPENDICES:

1. Soil Classification Table

2. -Field Costs, Projected Commodity Prices and Crop Yield Profiles.
 -Sample Asset Value Computation (by Crop).

4. The Matrix of the Formulated Model.

5. Computed Output of the formulated matrix.

Acknowledgement