Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Characterisation and Functionalisation
of Mechanically Fractured Graphene
Nanoribbons

A thesis presented in partial fulfilment of the requirements for
the degree of

Master of Science
in
Nanoscience

at Massey University, Manawatū
New Zealand

Samuel James Brooke
2017
Abstract

Graphene has been heralded as the supermaterial of the future, boasting incredibly high electron mobility, thermal conductivity, and physical strength – all contained within the world’s first true 2D material, only a single atom thick. Graphene nanoribbons (GNRs) broaden this potential further by demonstrating width-dependent band gaps due to confinement effects. In addition, the ability to define the edge geometry and dimensions of GNRs allows control over self-assembly of these novel carbon nanostructures. GNR synthesis has been broadly explored in literature, demonstrating both relatively high yields and atomic-scale precision. Rarely, however, are these two criteria achieved in the same technique. Longitudinal unzipping of carbon nanotubes (CNTs) generates large quantities of nanoribbon material at the expense of quality, while techniques such as chemical vapor deposition (CVD) and bottom up synthesis achieve truly astounding quality, but lack scalability.

Recently, the synthesis of highly ordered GNRs with tunable dimensions and unique geometries has been demonstrated using mechanical fracturing of a block of graphite via simple microtomy techniques. This method offers a top-down approach to GNR synthesis providing highly ordered structure on a much larger scale than efforts to date. In this work, this technique has been altered to use a dry-cut method, and the structural and chemical properties of the material obtained therein have been extensively characterised, demonstrating increased quality, structural order, and quantities obtainable. Further, this work has demonstrated the functionalisation of these dry-cut materials both chemically via simple organic chemistries, and non-covalently utilising filamentous bacteriophage as a route towards biofunctionalisation.
Acknowledgements

Firstly, I would like to formally thank my supervisors, Mark Waterland and Jasna Rakonjac, for their support and guidance throughout the many twists and turns of this research. I would also like to thank all my fellow groupmates, for their assistance and advice throughout this project.

I would like to acknowledge the expertise provided by Jordan Taylor, in understanding and adapting the microtomy-based techniques discussed herein, and the patience and effort spent analysing countless TEM samples.

I would like to acknowledge Ashley Way, for providing me with computational data, Ewan Fisher for running SEIRAS on all my samples, and Haidee Dykstra for her contributions from, and complex analysis of, the Raman data obtained from these mechanical fracturing techniques. Additionally, I would like to thank Callum Hill and Harry Deare for their efforts in refining the SLIPSERS protocols, which were invaluable during my final data collections.

Lastly, I would like to thank my friends and family for supporting me throughout the project, particularly in the last months. I would not have come this far without them.
Table of Contents

Chapter 1: Introduction ... 1

1.1 Graphene ... 1

1.2 Graphene Nanoribbons ... 1

1.3 Technological Significance ... 2

1.4 Physical, Thermal, and Electronic Properties................................. 3
 1.4.1 Physical Properties ... 3
 1.4.1 Electronic Properties .. 5
 1.4.2 Thermal Properties ... 7

1.5 Functionalisation ... 8

1.6 Graphene Nanoribbons .. 9

1.7 GNR Synthesis .. 10
 1.7.1 Carbon Nanotube Unzipping ... 10
 1.7.2 Chemical Exfoliation ... 11
 1.7.3 Lithographic Synthesis ... 12
 1.7.4 Chemical Vapour Deposition (CVD) ... 13
 1.7.5 Thermal Decomposition ... 15
 1.7.6 Bottom-Up Chemical Synthesis ... 15
 1.7.7 Mechanical Fracturing ... 16

1.8 Summary ... 16

1.9 Research Aims ... 17

1.10 Thesis Outline .. 17
Chapter 2: Synthesis and Functionalisation of Graphene Oxide Nanoribbons

2.11.3 Oxalyl Chloride Catalysed Reactions .. 30
2.12 GONR-CA AuNp Functionalisation ... 31
2.13 AuNp Synthesis ... 31
2.14 Filamentous Bacteriophage Functionalisation 32

Chapter 3: Mechanically Fractured GNRs ... 33
3.1 Mechanical Fracturing ... 33
3.2 Mechanical Fracturing in Water .. 37
3.3 Mechanical Fracturing in Air ... 39
3.4 Discussion of Mechanical Fracturing .. 41
3.5 Summary ... 44

Chapter 4: Characterisation .. 45
4.1 Physical Characteristics – AFM and TEM .. 45
4.2 Raman Spectroscopy ... 55
4.3 Infrared Spectroscopy .. 57
4.4 UV-vis Spectroscopy ... 63
4.4.1 Liquid-Phase Exfoliation of GNRs .. 66
4.5 Scission .. 69
4.6 Summary ... 73

Chapter 5: Functionalisation... 74
5.1 Covalent Functionalisation .. 74
5.2 Functional Standard – Graphene Oxide .. 76
5.3 GNR Functionalisation .. 82
Table of Figures

Figure 1. 1 - 3D models of graphene and a graphene nanoribbon 1
Figure 1. 2 - Schematic representation of fracturing types 6
Figure 1. 3 - Diagrams of graphene and GNR edge types 10

Figure 2. 1 - Microtome setup for mechanical fracturing in air 21

Figure 3. 1 - 3D representation of GNR synthesis via mechanical fracturing in air
... 35
Figure 3. 2 - Microtome setup for mechanical fracturing in air 36
Figure 3. 3 - 3D representation of how GQD "nanosquares" can be synthesised using mechanical fracturing... 37
Figure 3. 4 - Strip of dry-cut GNBs collected on brush and at the knife edge ... 40
Figure 3. 5 - TEM images of GNRs generated via incorrect alignment 44

Figure 4. 1 - AFM images of a partially exfoliated GNB on mica 47
Figure 4. 2 - TEM images of GNRs with respect to exfoliation extent 49
Figure 4. 3 - TEM images of GNR stack as viewed perpendicularly and tilted .49
Figure 4. 4 - GNR stack height determination using contact mode AFM 50
Figure 4. 5 - TEM images of tapered GNR stacks... 52
Figure 4. 6 - High-resolution TEM image of GNR (stack) edge 53
Figure 4. 7 - TEM images of GNR stacks exhibiting diminished scattering at ends ... 54
Figure 4. 8 - Raman spectrum of graphene .. 56
Figure 4. 9 - SEIRS spectra of GNRs ... 58

Figure 4.10 - IR spectral comparisons between GNRs (dry-cut 1) and SDBS spectra... 60

Figure 4.11 - IR spectral comparisons between GNRs (dry-cut 2) and SDBS spectra... 61

Figure 4.12 - IR spectral comparisons between GNRs (dry-cut 2) and SDBS spectra... 62

Figure 4.13 - UV-vis absorption spectra of varying concentrations of GNR dispersed in IPA.. 64

Figure 4.14 - UV-vis quantification study on the dispersibility of GNRs in various common solvents .. 67

Figure 4.15 - UV-vis spectra of DCM and CHCl3 dispersed GNRs after extended sonication .. 67

Figure 4.16 - TEM images illustrating sonication-induced scission of large width GNRs ... 70

Figure 4.17 - Raman spectra of stock GNRs and sonicated GNRs 72

Figure 5.1 - Unit cell of graphene.. 76

Figure 5.2 - Reaction schemes of GO-CA modifications................................. 78

Figure 5.3 - AFM and TEM images of thiolated GO (GO-CA) and AuNps..... 79

Figure 5.4 - GNR functionalisation with CA and AuNps 83

Figure 5.5 - DFT calculations of modified GNR analogue 84

Figure 5.6 - IR spectra comparisons of various GNR thiol modifications 85

Figure 5.7 - TEM images of AuNp functionalised GONR-CA......................... 88

Figure 5.8 - TEM of GNRs demonstrating oxidation-dependent functionalisation ... 89
Figure 5. 9 - Raman spectra of GONR and GONR-CA90
Figure 5. 10 - Schematic representations of filamentous bacteriophage93
Figure 5. 11 - Filamentous bacteriophage-functionalised GNRs94

Figure A1. 1 - Additional AFM images of the GNB depicting full size and morphology...100
Figure A1. 2 - Zoom of TEM image showing coiling of tapered GNR stacks. 101
Figure A1. 3 - SDBS spectral comparisons between GNR samples and benzoic acid derivatives ...102
Figure A1. 4 - Structure of catalysts used in esterification and amidation reactions. ..103
Figure A1. 5 - GONR-CA stacks and AuNps showing no specific binding 103
Figure A1. 6 - Raman spectra of stock GNRs and GNRs sonicated in CHCl₃. 104
Figure A1. 7 - TEM images showing solvent trapped between graphene layers forming bubbles of gas upon electron beam-excitation..........................104

Figure A2. 1 - Schematic diagrams of unit cell of graphene and bond distances ..105
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>CA</td>
<td>Cysteamine</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>CNT(s)</td>
<td>Carbon nanotube(s)</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapor Deposition</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-dicyclohexylcarbodiimide (catalyst)</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine (catalyst)</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (catalyst)</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FET</td>
<td>Field effect transistor</td>
</tr>
<tr>
<td>GNB(s)</td>
<td>Graphene nanoblock(s)</td>
</tr>
<tr>
<td>GNR(s)</td>
<td>Graphene nanoribbon(s)</td>
</tr>
<tr>
<td>GNR-CA</td>
<td>Graphene nanoribbons, cysteamine modified</td>
</tr>
<tr>
<td>GNR-MPA</td>
<td>Graphene nanoribbons, 3-mercaptopropionic acid modified</td>
</tr>
<tr>
<td>GO</td>
<td>Graphene oxide</td>
</tr>
<tr>
<td>GO-CA</td>
<td>Graphene oxide, cysteamine modified</td>
</tr>
<tr>
<td>GONR(s)</td>
<td>Graphene oxide nanoribbon(s)</td>
</tr>
<tr>
<td>GONR-CA</td>
<td>Graphene oxide nanoribbons, cysteamine modified</td>
</tr>
<tr>
<td>GQD(s)</td>
<td>Graphene quantum dot(s)</td>
</tr>
</tbody>
</table>
H₂O Water
H₂O₂ Hydrogen peroxide
H₂SO₄ Sulfuric acid
H₃PO₄ Phosphoric acid
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (buffer)
HOPG Highly oriented pyrolytic graphite
I_D:I_G Ratio of intensities of D band to G band
IPA Isopropyl alcohol
IR Infrared spectroscopy
KMnO₄ Potassium permanganate
LiAlH₄ Lithium aluminium hydride
LPE Liquid-phase exfoliation
MD Molecular dynamics
MeCN Acetonitrile
MPA 3-mercaptopropionic acid
MQ Milli-Q® > 18 MΩ grade H₂O
MWNT(s) Multi-walled carbon nanotube(s)
NaBH₄ Sodium borohydride
NHS N-hydroxysuccinimide (catalyst)
PDC Pyridinium dichromate
Phage Filamentous bacteriophage
PMMA Poly(methyl methacrylate)
Raman Raman spectroscopy/microscopy
rpm Revolutions per minute
SDBS Structural Database for Organic Compounds
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEIRS</td>
<td>Surface enhanced infrared spectroscopy</td>
</tr>
<tr>
<td>SLIPSERS</td>
<td>Slippery liquid-infused porous surface-enhanced Raman scattering</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>UV-vis</td>
<td>Ultraviolet/visible spectroscopy</td>
</tr>
<tr>
<td>ZYA</td>
<td>High-grade HOPG with mosaic spread of $0.4^\circ \pm 0.1^\circ$</td>
</tr>
<tr>
<td>ZYB</td>
<td>Medium-grade HOPG with mosaic spread of $0.8^\circ \pm 0.2^\circ$</td>
</tr>
<tr>
<td>ΔG</td>
<td>Change in Gibbs energy</td>
</tr>
<tr>
<td>ΔH</td>
<td>Change in enthalpy</td>
</tr>
<tr>
<td>ΔS</td>
<td>Change in entropy</td>
</tr>
<tr>
<td>κ</td>
<td>Thermal conductivity in Wm$^{-1}$K$^{-1}$</td>
</tr>
</tbody>
</table>