Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A COMPARISON OF FOLIAR AND SOIL UPTAKE OF NUTRIENTS IN FRENCH BEAN (PHASEOLUS VULGARIS L.).

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF HORTICULTURAL SCIENCE IN SOIL SCIENCE MASSEY UNIVERSITY

Susan Elizabeth Jolly

1986
ABSTRACT

An aspect of each of three factors relating to efficiency of fertilizer use were studied in glasshouse experiments using beans Phaseolus vulgaris var. Gallatin 50. These three factors were: the quantities that can be applied; physiological aspects of nutrient utilization following foliar uptake; and interactions with other sources of nutrient supply.

Distribution patterns of 35S, 32P and 65Zn were examined following application to soil and foliage of beans. It was found that a greater proportion of 32P and 65Zn was present in the fruit following foliar uptake than was the case following root uptake. This difference was not evident for 35S.

Retention of a commercial nutrient spray on the foliage of bean plants was measured and found to correlate well with both leaf area and leaf fresh weight.

The effect of sprays on leaf chlorophyll was also examined. Environmental effects were found to have more influence on leaf chlorophyll than nutrient sprays.

Root uptake of 32P was increased by spraying the foliage with either nutrient solution or water. It was concluded that the effect was water related and not connected with nutrient application.

The implications of the above findings were discussed in the
context of efficiency of fertilizer use.
I gratefully acknowledge the assistance of the following people:

Professor J.K. Syers, for supervision and encouragement in this study.

Mr R.W. Tillman, for his supervision, inspiration and understanding throughout this study.

Mr A.G. Robertson, for many helpful discussions and comments on aspects relating to plant physiology.

Jacqueline Rowarth and Howard Nicholson for their invaluable aid with proof reading.

Martin Levis, for his help with computing and graphics.

Members of the Soil Science department, especially Margaret Wallace whose help with analytical methods was much appreciated.

Hoescht (NZ) Ltd, for funding this project; and Massey University for the Helen E. Akers Scholarship, the Johannes August Anderson Scholarship, the Farmers Union Scholarship, the Sydney Campbell Memorial Scholarship and the Yates Corporation Bursary.

Finally, and most importantly, my parents, for their support and encouragement.
Table of Contents

ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iv
TABLE OF CONTENTS .. v
LIST OF FIGURES ... x
LIST OF TABLES .. xii

CHAPTER 1
INTRODUCTION .. 1

CHAPTER 2
REVIEW OF LITERATURE 5
2.1 Introduction ... 6
2.2 Pathway of nutrient movement during uptake 6
2.2.1 Roots ... 6
2.2.1.1 Supply of nutrients to the root 6
2.2.1.2 Movement into and across the root 7
2.2.2 Leaves .. 8
2.2.2.1 Supply of nutrients to the leaf 8
2.2.2.2 Movement into and across the leaf 10
2.3 Translocation

2.3.1 Root absorbed nutrients

2.3.2 Leaf absorbed nutrients

2.4 Factors affecting uptake and translocation

2.4.1 Environmental factors

2.4.1.1 Light

2.4.1.2 Temperature

2.4.1.3 Moisture

2.4.1.4 Oxygen

2.4.2 Solution Factors

2.4.2.1 Composition

2.4.2.2 Concentration

2.4.2.3 pH

2.4.2.4 Other solution factors

2.4.3 Plant factors

2.4.3.1 Age and position of absorbing tissue

2.4.3.2 Nutrient status of the plant

2.4.3.3 Plant species

2.5 Interactions

2.6 Crop responses to fertilizers applied to soil and foliage

2.6.1 Fertilizers applied to the soil

2.6.2 Fertilizers applied to the Foliage

2.6.2.1 Nutrient levels and visual deficiency

2.6.2.2 Vegetative Growth
(i) Macronutrients 32
(ii) Micronutrients 33
2.6.2.3 Yield: Quantity 33
(i) Macronutrients 34
(ii) Micronutrients 37
2.6.2.4 Yield: Quality 39
2.6.2.5 Other responses 41
2.7 Beans (Phaseolus vulgaris) and Foliar Fertilizers 43
 2.7.1 Botany ... 43
 2.7.2 Nutritional requirements 44
 2.7.3 Foliar fertilizers and beans 45
2.8 Conclusions .. 46

CHAPTER 3

MATERIALS AND METHODS .. 48
3.1 Preparation of plants .. 49
3.2 Nutrient applications .. 50
 (i) Spraying ... 50
 (ii) Spot applications 50
3.3 Plant tissue preparation 50
3.4 Nutrient analyses .. 51
 3.4.1 Total Sulphur .. 51
 3.4.2 Total Phosphorus 52
3.4.3 Total Zinc..53
3.5 Isotope analyses...53
 3.5.1 Sulphur-35...53
 3.5.2 Phosphorus-32.......................................56
 3.5.3 Zinc-65..56

CHAPTER 4
DISTRIBUTION PATTERNS OF S35 IN BEANS PHASEOLUS VULGARIS...........59
 4.1 Introduction...60
 4.2 Method..61
 4.3 Results...64
 4.4 Discussion...68

CHAPTER 5
DISTRIBUTION PATTERNS OF P32 AND ZN65 IN PHASEOLUS VULGARIS......74
 5.1 Introduction...75
 5.2 Methods..76
 5.3 Results...77
 5.4 Discussion...79

CHAPTER 6
THE CONTRIBUTION OF SPRAY RUNOFF TO PLANT RESPONSES TO NUTRIENT SPRAYS..............87
6.1 Introduction ... 88
6.2 Methods ... 89
6.3 Results .. 92
6.4 Discussion .. 94

CHAPTER 7
EFFECT OF FOLIAR SPRAYS ON THE UPTAKE OF P32 BY THE ROOTS 104
7.1 Introduction ... 105
7.2 Method .. 106
7.3 Results .. 107
7.4 Discussion .. 109
CONCLUSION ... 115
SUMMARY .. 118
BIBLIOGRAPHY .. 122
LIST OF FIGURES

2-1 Contact angles of droplets on a surface.................9

2-2 Generalised crop response curve for fertilizer application showing ranges of positive response (I), no response (II) and negative response (III)....28

3-1 Flow sequence for the determination of phosphorus in plant material.........................54

3-2 Curve relating H-number and counting efficiency for S\(^{35}\)..................................57

3-3 Curve relating H-number and counting efficiency for Zn\(^{65}\).................................58

4-1 Position of application of K\(_2\)SO\(_4\) (0.05M) to soil and the first and third trifoliate leaves......62

4-2 Autoradiographs of beans (Phaseolus vulgaris) following uptake of S\(^{35}\) applied to a leaf (a) and the soil (b).............................72

6-1 Chlorophyllometer calibration curve for Phaseolus vulgaris leaves grown under glasshouse conditions (high range setting). Scale factor = 1.3..................................91
6-2 Chlorophyll levels in first trifoliate leaf over the growing season. Data averaged over treatments and replicates..............95

6-3 Minimum day humidities over the growing period........97

6-4 Maximum day temperatures over the growing period.....99

6-5 Retention of Complesal solution on Phaseolus vulgaris as a function of fresh weight (r=0.76).....102

6-6 Retention of Complesal solution on Phaseolus vulgaris as a function of leaf area (r=0.78)........103

7-1 Diagram of pot showing position of labelled soil at time of transplanting.........................107
LIST OF TABLES

4-1 Total Sulphur in plant parts (µg g⁻¹) 65

4-2 Recovery of applied S³⁵ in plant parts and
distribution of S³⁵ within the plants 67

4-3 Ratios (α) of specific activity of plant
parts to the average specific activity
of the whole plant 69

5-1 Total P and Zn (µg g⁻¹) in bean
plants (average over treatments) 78

5-2 Ratios (α) of specific activity of plant
parts to the average specific activity of
the whole plant for P³² and Zn⁶⁵ 80

5-3 Recoveries of applied P³² in plant
parts and distribution within the plants 82

5-4 Recoveries of applied Zn⁶⁵ in plant
parts and distribution within the plants 84

5-5 Quantities of S and P supplied by one
application of Complesal 12-2-5 and Zn
supplied by one application of multimicro
at recommended rates and assuming retention
of 5 ml of solution per plant and plant dry
weight of 5 g.. 86

6-1 Dry weights of tops (g).............................. 93

6-2 Estimate of the nutrient that can be supplied to the surface of the leaf in a single application of Complesal 12-2-5 solution, as a proportion of the total plant requirements.................... 100

6-3 Estimate of the nutrient that can be supplied to the surface of the leaf in a single application of Complesal multimicro solution, as a proportion of the total plant requirements..................... 101

7-1 Analysis of plant tops................................. 109

7-2 ANOVA for response to spraying....................... 111

7-3 Dry weights and root length estimates for sprayed and unsprayed plants (average of three replicates)........................... 111