Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A Computer Integrated Manufacturing System for Small Scale Production of Electronic Units

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Production Technology at Massey University

Author: Ronald John Biersteker
Year: 1995
Abstract

This research project concerns the design of a rapid response, computer integrated Printed Circuit Board (PCB) Component Assembly System (CAS). The CAS system forms an integral part of a commercially viable Manufacturing Pilot Plant (MPP) for the design, production, and assembly of high quality special purpose PCBs in low volumes.

The design of the CAS system begins with the identification of the characteristics and deficiencies of conventional low volume, high variety PCB manufacturing systems. Next, a vision for the MPP as a whole is presented, with particular emphasis on the CAS system. A Generic Manufacturing System Design Methodology (GDM) is then derived, and is applied to the design of the CAS system. Through the GDM a working CAS system is constructed, based around a central CAS Master and 3 assembly workstations.

The working CAS system is then analysed through a comparison with a typical conventional low volume manual assembly system. The results support the expectation of superior performance from the envisioned system.

Finally, areas requiring further work are identified.
Acknowledgements

I wish to express my sincere thanks to my supervisor, Dr. Ross R. Nilson.

Dr. Nilson has provided much guidance and encouragement throughout my studies, including the writing of this thesis.

I am very grateful for his supervision and advice.

I also wish to thank Mr. Alan C. Wright.

Mr. Wright evaluated the final draft of my thesis and provided valuable feedback.

Finally, I wish to thank the staff, technicians and postgraduates of the Department of Production Technology, Massey University.

These people, especially the technicians, have willingly given valuable assistance and support.

I am very grateful for having had the opportunity to pursue and complete this course of study.
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xix</td>
</tr>
<tr>
<td>List of Exhibits</td>
<td>xx</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Research Project Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Thesis Overview</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2: A Vision for the MPP</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Conventional Low Volume - High Variety PCB Production Systems</td>
<td>5</td>
</tr>
<tr>
<td>2.3 The Vision</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 3: Manufacturing System Design Methodologies</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Investigation of Existing Design Methodologies</td>
<td>10</td>
</tr>
</tbody>
</table>
3.2.1 The Focused Factory
3.2.2 Reengineering
3.2.3 World Class Manufacturing Action Agenda
3.2.4 Guidance for the Development of World Class Manufacturing Systems
3.2.5 Principles of Action Linking Strategy to Technology
3.2.6 Manufacturing Systems Engineering
3.2.7 Structured Techniques
3.3 Evaluation of Existing Design Methodologies
3.4 A Generic Manufacturing System Design Methodology
 3.4.1 Stage 1: Define the Characteristics of the Target Market
 3.4.2 Stage 2: Define the Objectives
 3.4.3 Stage 3: Examine and Analyse Existing Manufacturing Systems
 3.4.4 Stage 4: Develop Conceptual Models
 3.4.5 Stage 5: Develop Functional Models
 3.4.6 Stage 6: Implement the Design
 3.4.7 General Considerations
 3.4.8 The GDM in Perspective

Chapter 4: Traditional Manufacturing Systems

4.1 Introduction
4.2 The Traditional Job Shop
 4.2.1 Market Demands
 4.2.1.1 A Typical Customer
 4.2.1.2 Product Related Attributes
 4.2.1.3 Planning and Marketing
 4.2.2 Process Selection
 4.2.2.1 Equipment and Layout
 4.2.2.2 Labour
 4.2.2.3 Stock
 4.2.2.4 Production
 4.2.3 Common Problems
 4.2.4 Potential Solutions
4.3 The Traditional Batch Production System
4.3.1 Market Demands

4.3.1.1 A Typical Customer
4.3.1.2 Product Related Attributes
4.3.1.3 Planning and Marketing
4.3.1.4 Distribution

4.3.2 Process Selection

4.3.2.1 Equipment and Layout
4.3.2.2 Labour
4.3.2.3 Stock
4.3.2.4 Production

4.3.3 Common Problems

4.3.4 Potential Solutions

4.4 The Traditional Mass Production System

4.4.1 Market Demands

4.4.1.1 A Typical Customer
4.4.1.2 Product Related Attributes
4.4.1.3 Planning and Marketing
4.4.1.4 Distribution

4.4.2 Process Selection

4.4.2.1 Equipment and Layout
4.4.2.2 Labour
4.4.2.3 Stock
4.4.2.4 Production

4.4.3 Common Problems

4.4.4 Potential Solutions

4.5 Selected Bibliography

Chapter 5: Modern Manufacturing Systems

5.1 Introduction

5.2 Integrated Manufacture and Computer Integrated Manufacturing

5.2.1 Introduction

5.2.1.1 Differing Views of CIM

5.2.2 Objectives of Integrated Manufacture and CIM
5.2.2.1 Objectives of Integrated Manufacture
5.2.2.2 Objectives of CIM
5.2.2.3 Potential Benefits
5.2.3 The Origin of Integrated Manufacture and CIM
5.2.3.1 Market Pressure
5.2.3.2 Growth of Organisations
5.2.3.3 Islands of Automation
5.2.4 A Typical Application
5.2.5 Implementation
5.2.5.1 The Implementation Strategy
5.2.5.2 The Need for Balance
5.2.5.3 Human Considerations
5.2.5.4 Quality
5.2.5.5 Simplification and Simplicity
5.2.6 Common Problems with CIM
5.2.6.1 Data Accuracy
5.2.6.2 Implementation Failure
5.2.6.3 Operational Difficulties
5.2.6.4 Resistance to CIM
5.2.6.5 The Futuristic CIM System
5.3 Just In Time
5.3.1 Introduction
5.3.2 Objectives of JIT
5.3.2.1 Potential Benefits
5.3.3 The Origin of JIT
5.3.3.1 The Toyota Production System
5.3.4 A Typical Application
5.3.5 Implementation
5.3.5.1 Product Manufacture
5.3.5.2 Supply
5.3.5.3 Planning
5.3.5.4 Technical Systems
5.3.5.5 Inventory
5.3.5.6 Quality
5.3.5.7 Human Considerations
5.3.5.8 Production Dynamics
5.3.5.9 Improvement

5.3.6 Common Problems with JIT
5.3.6.1 Definitions
5.3.6.2 Implementation
5.3.6.3 Supply
5.3.6.4 Technical Systems
5.3.6.5 Human Considerations
5.3.6.6 Production Dynamics
5.3.6.7 An Unbalanced Focus

5.4 Group Technology
5.4.1 Introduction
5.4.2 Objectives of GT
5.4.2.1 Potential Benefits
5.4.3 The Origin of Group Technology
5.4.4 A Typical Application
5.4.5 Implementation
5.4.5.1 Product Families
(i) Classification and Coding Systems
(ii) Standardisation
(iii) Information Resource
5.4.5.2 Cellular Manufacturing
(i) Physical Elements of a Cell
(ii) Layout
(iii) Quality
(iv) Scheduling and Control
(v) Cells and Batch Production
(vi) Inventory
5.4.5.3 Non Group-Able Products
5.4.5.4 Human Considerations
5.4.6 Common Problems with GT
5.4.6.1 Product Families
5.4.6.2 Data
5.4.6.3 Cell Manufacturing

5.5 Material Requirements Planning and Manufacturing Resource Planning

5.5.1 Introduction
5.5.2 Objectives of MRP and MRP II
 5.5.2.1 Potential Benefits
5.5.3 The Origin of MRP and MRP II
5.5.4 A Typical Application
5.5.5 Implementation
 5.5.5.1 The Master Production Schedule
 5.5.5.2 Independent and Dependent Demand Items
 5.5.5.3 Data Requirements
 5.5.5.4 The Explosion Process
 5.5.5.5 Coverage of Net Requirements
 5.5.5.6 Production Control
 5.5.5.7 Modes of Operation
 (i) The Regenerative System
 (ii) The Net Change System
5.5.6 Common Problems with MRP and MRP II Systems
 5.5.6.1 System Performance
 5.5.6.2 The Model of the Production System
 5.5.6.3 The Scope of MRP and MRP II
 5.5.6.4 General Problems

5.6 Selected Bibliography

Chapter 6: Design of the CAS System

6.1 Introduction
6.2 Stage 1: Define the Characteristics of the Target Market
6.3 Stage 2: Define the Objectives of the MPP
 6.3.1 Broad Objectives
 6.3.2 Operational Objectives
 6.3.3 Technology-Based Objectives
6.3.4 Objectives Common to Many Manufacturers

6.4 Stage 3: Examine and Analyse Existing Manufacturing Systems

6.4.1 A Review of Traditional and Modern Manufacturing Systems

6.4.1.1 Job Shop Principles and the MPP

6.4.1.2 Batch Production Principles and the MPP

6.4.1.3 Mass Production Principles and the MPP

6.4.1.4 Clarification Regarding Flexibility and Efficiency

6.4.1.5 Integrated Manufacture and Computer Integrated Manufacturing Principles and the MPP

6.4.1.6 Just in Time Principles and the MPP

6.4.1.7 Group Technology Principles and the MPP

6.4.1.8 Material Requirements Planning and Manufacturing Resource Planning Principles and the MPP

6.4.2 PCB Assembly System Case Studies

6.4.2.1 Case Study 1: The Unisys PCB Assembly Facility

 (i) The Computer System

 (ii) The Assembly Process

 (iii) Application to the CAS System

6.4.2.2 Case Study 2: A Typical Conventional Low Volume Manual Assembly Facility

 (i) Application to the CAS System

6.5 Stage 4: Develop Conceptual Models

6.5.1 A Conceptual Model of On-Line Processes

6.5.1.1 Initial Contact with Customer

6.5.1.2 Product Design

6.5.1.3 Checking Stock Levels and Allocating Stock

6.5.1.4 Scheduling and Estimation

6.5.1.5 Production of the Bare Board

6.5.1.6 Generation of Assembly Support Information

6.5.1.7 Assembly

6.5.1.8 Testing

6.5.1.9 Billing

6.5.1.10 Planning Delivery
6.5.1.11 Contacting the Customer
6.5.2 Conceptual Models of Off-Line Processes
 6.5.2.1 Stock Ordering
 6.5.2.2 Miscellaneous Stock Usage
 6.5.2.3 Inward Goods
 6.5.2.4 Update of Stock Records
 6.5.2.5 Income
 6.5.2.6 Expenditure
6.5.3 Ranking Processes on the Basis of Importance
 6.5.3.1 Identification of the Critical Path
 6.5.3.2 Identification of the Core Processes
 6.5.3.3 Overall Ranking

Chapter 7: Implementation of the CAS System

7.1 Introduction
7.2 Stage 5: Develop Functional Models
 7.2.1 Overview of the CAS System
 7.2.1.1 CAS System Hardware and Software
 (i) The CAS Master
 (ii) Assembly Workstations
 (iii) Support Systems
 7.2.1.2 Advantages and Limitations of a Computer-Based System
 7.2.2 Detailed Design: On-Line Processes
 7.2.2.1 The CAS Database
 7.2.2.2 Initial Contact with the Customer
 7.2.2.3 Product Design
 7.2.2.4 Design Data Requirements
 7.2.2.5 Quotation of Cost and Delivery Date
 7.2.2.6 Checking Stock Levels and Allocating Stock
 7.2.2.7 Scheduling
 7.2.2.8 Generation of Assembly Support Information
 7.2.2.9 Production of the Bare Board
 7.2.2.10 Assembly
(i) Stage 1: Surface Mount Components
(ii) Stage 2: Small Through-Hole Components
(iii) Stage 3: Large Through-Hole Components
(iv) Stage 4: Uncommon Components
7.2.2.11 Updating the CAS Database
7.2.2.12 Testing
7.2.2.13 Planning Delivery
7.2.2.14 Contacting the Customer
7.2.2.15 Billing
7.2.2.16 Shipment
7.2.3 Detailed Design: Off-Line Processes
7.2.3.1 Off-Line Stock Transfers
7.2.3.2 Income and Expenditure
7.3 Stage 6: Implement the Design
7.3.1 The CAS Database
7.3.2 Graphic Overlay Data Filter
7.3.2.1 Functional Properties of the Filter
 (i) Task 1: Offset Data to New Origin
 (ii) Task 2: Scale Data
 (iii) Task 3: Identify and Interpret HPGL Instructions
 (iv) Task 4: Identify Border Data
7.3.3 Graphic Overlay Viewer / Editor
7.3.3.1 Graphic Overlay Viewer
7.3.3.2 Graphic Overlay Editor
7.3.4 Insert File Editor / Generator
7.3.4.1 Functional Properties of the Editor
 (i) Database Listing
 (ii) Mouse Control
 (iii) Edit-Able Data
7.3.4.2 Modes of Operation
 (i) Mode 1: Random Selection
 (ii) Mode 2: Step-Through
7.3.5 Setting an Order in Progress
7.3.5.1 Stock Level Checking and Allocation Procedure

(i) Functional Properties of the System

7.3.5.2 Assembly Order Information Generation Procedure

(i) Functional Properties of the System

7.3.6 Merge Data

7.3.6.1 Functional Properties of the Data Merger

7.3.7 Production of the Bare Board

7.3.8 Assembly

7.3.8.1 The Stages of Assembly

7.3.8.2 Functional Properties of the Assembly System

(i) Basic Operation

(ii) Interpretation of Highlight Colours

(iii) Multiple Components

(iv) Re-Drawing, Auto-Centring, and Auto-Scaling

(v) Rotation

(vi) Recording of Stock Usage

7.3.9 Stock Management

7.3.9.1 Component Pick-List

7.3.9.2 Stock Transfer Between Stores

7.3.9.3 Inward Goods and Miscellaneous Stock Usage

7.3.9.4 Stock Take

7.3.10 Updating the Databases

7.3.10.1 Updating the CAS Database

7.3.10.2 Updating the Allocated-Stock Database

7.3.11 Completion of an Order

7.3.12 The CAS Shell

7.3.13 CAS Configuration

Chapter 8: Analysis of the CAS System .. 150

8.1 Introduction .. 150

8.2 Scope of Experiment ... 150

8.3 Hypothesis ... 151

8.3.1 Basis of Hypothesis .. 151
8.4 Structure of the Experiment

8.4.1 Constitution of the Product

8.4.2 Setup

8.4.3 Experiment Execution and Expected Results

8.4.3.1 Stage 1: Stock Level Checking

8.4.3.2 Stage 2: Setup

8.4.3.3 Stage 3: Assembly (1)

8.4.3.4 Stage 4: Soldering (1)

8.4.3.5 Stage 5: Assembly (2)

8.4.3.6 Stage 6: Soldering (2)

8.4.3.7 Stage 7: Lead Clipping

8.5 Results and Analysis

8.5.1 Trial 1

8.5.2 Trial 2

8.6 Further Analysis of Results

8.7 Conclusions

Chapter 9: Summary and Conclusions

9.1 Summary

9.2 Conclusions

9.2.1 Commercial Viability

9.2.2 Rapid Response

9.2.3 High Quality

9.2.4 Low Volume - High Variety Production

9.3 Future Work

9.3.1 Supply of Components

9.3.2 Design

9.3.3 Assembly

9.3.4 General

9.3.5 The Benefits of Manufacturing Experience

Appendices

Appendix A General Characteristics and Standard Features of the CAS System
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>The CAS Database</td>
<td>170</td>
</tr>
<tr>
<td>A2</td>
<td>File Names and Extensions</td>
<td>171</td>
</tr>
<tr>
<td>A3</td>
<td>The Configuration File</td>
<td>173</td>
</tr>
<tr>
<td>A4</td>
<td>Standard Format for Data Files</td>
<td>173</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Graphic Overlay Data Filter</td>
<td>175</td>
</tr>
<tr>
<td>B1</td>
<td>Operation of the Filter</td>
<td>175</td>
</tr>
<tr>
<td>B2</td>
<td>Commonly Used Instructions in Hewlett Packard Graphics Language</td>
<td>175</td>
</tr>
<tr>
<td>B2.1</td>
<td>The Input Window Instruction</td>
<td>175</td>
</tr>
<tr>
<td>B2.2</td>
<td>The Pen Up Instruction</td>
<td>175</td>
</tr>
<tr>
<td>B2.3</td>
<td>The Pen Down Instruction</td>
<td>176</td>
</tr>
<tr>
<td>B2.4</td>
<td>The Plot Absolute Instruction</td>
<td>176</td>
</tr>
<tr>
<td>B2.5</td>
<td>The Arc Absolute Instruction</td>
<td>176</td>
</tr>
<tr>
<td>B2.6</td>
<td>The Circle Instruction</td>
<td>176</td>
</tr>
<tr>
<td>B3</td>
<td>Turbo Pascal Graphics Procedures</td>
<td>176</td>
</tr>
<tr>
<td>B3.1</td>
<td>Data Types in Turbo Pascal</td>
<td>176</td>
</tr>
<tr>
<td>B3.2</td>
<td>The MoveTo Procedure</td>
<td>177</td>
</tr>
<tr>
<td>B3.3</td>
<td>The LineTo Procedure</td>
<td>177</td>
</tr>
<tr>
<td>B3.4</td>
<td>The Arc Procedure</td>
<td>177</td>
</tr>
<tr>
<td>B3.5</td>
<td>The FloodFill Procedure</td>
<td>177</td>
</tr>
<tr>
<td>B4</td>
<td>Characteristics of the Output File</td>
<td>177</td>
</tr>
<tr>
<td>B4.1</td>
<td>Section One: Five Special Purpose Longints</td>
<td>178</td>
</tr>
<tr>
<td>B4.2</td>
<td>Section Two: Pairs of Longints</td>
<td>178</td>
</tr>
<tr>
<td>Appendix C</td>
<td>INSERT File Editor / Generator</td>
<td>179</td>
</tr>
<tr>
<td>C1</td>
<td>Operation of the Editor</td>
<td>179</td>
</tr>
<tr>
<td>C2</td>
<td>Characteristics of the Output File</td>
<td>180</td>
</tr>
<tr>
<td>C3</td>
<td>Magnification and Navigation Facilities</td>
<td>182</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Operation of CASMAIN.EXE</td>
<td>183</td>
</tr>
<tr>
<td>D1</td>
<td>Stock System</td>
<td>183</td>
</tr>
<tr>
<td>D1.1</td>
<td>Add New Component</td>
<td>183</td>
</tr>
<tr>
<td>D1.2</td>
<td>Modify Existing Component</td>
<td>184</td>
</tr>
<tr>
<td>D1.3</td>
<td>Delete Existing Component</td>
<td>184</td>
</tr>
<tr>
<td>D1.4</td>
<td>Display CAS Database</td>
<td>184</td>
</tr>
<tr>
<td>D1.5</td>
<td>Print WStn Loading Report</td>
<td>185</td>
</tr>
</tbody>
</table>
D1.6 Return to Main Menu (Esc)

D2 Assembly Planning System

D2.1 View Work In Progress (WIP)

D2.2 Activate New PCB

(i) The Assembly Order Database

(ii) The Allocated-Stock Database

(iii) Stock Level Checking

(iv) Assembly Order Information Generation

(v) Add Order to List of WIP

D2.3 De-activate PCB

D2.4 Display Partial PCB Data

D2.5 Display Complete PCB Data

D2.6 Print Partial PCB Data

D2.7 Print <PCB>.ODR File

D2.8 Return to Main Menu (Esc)

D3 Utilities

D3.1 Backup Files

D3.2 Restore Files

D3.3 Re-index CAS Database

D3.4 Setup

D3.5 Return to Main Menu (Esc)

D4 Exit

Appendix E Assembly Order Information Generation

Appendix F Merge Data

F1 Operation of Data Merger

Appendix G Assembly

G1 Operation of the Assembly System

G1.1 Effect of Menu Options

G2 Magnification

Appendix H Stock Management System

H1 Operation of the Stock Management System

H1.1 Stock Transfers Within the Manufacturing Pilot Plant

H1.2 Miscellaneous Stock Usage
<table>
<thead>
<tr>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1.3 Inward Goods</td>
<td>197</td>
</tr>
<tr>
<td>H1.4 Stock Take</td>
<td>197</td>
</tr>
<tr>
<td>H1.5 General Features of the Pick-List</td>
<td>197</td>
</tr>
<tr>
<td>H2 Manual Control of Storage Device</td>
<td>198</td>
</tr>
<tr>
<td>H3 Characteristics of Output Files</td>
<td>198</td>
</tr>
<tr>
<td>Appendix I Data Sheets for Experiment</td>
<td>199</td>
</tr>
<tr>
<td>I1 Test Product Parts List</td>
<td>199</td>
</tr>
<tr>
<td>I2 Main Store Records</td>
<td>200</td>
</tr>
<tr>
<td>I3 Data Entry Sheet</td>
<td>201</td>
</tr>
<tr>
<td>I4 Component Order Form</td>
<td>202</td>
</tr>
<tr>
<td>I5 Complete Results for Trial 1</td>
<td>203</td>
</tr>
<tr>
<td>I6 Complete Results for Trial 2</td>
<td>203</td>
</tr>
<tr>
<td>Appendix J CAS System Source Code</td>
<td>204</td>
</tr>
</tbody>
</table>

References .. 205
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5-1</td>
<td>Kanban shop floor control logic</td>
<td>52</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>MRP II shop floor control logic</td>
<td>67</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>A perspective on time-based manufacturing</td>
<td>77</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>The computer system at the Unisys PCB assembly facility</td>
<td>87</td>
</tr>
<tr>
<td>Figure 6-3</td>
<td>A conceptual model of the minimum necessary on-line processes</td>
<td>92</td>
</tr>
<tr>
<td>Figure 6-4</td>
<td>Conceptual models of off-line processes, Part I</td>
<td>96</td>
</tr>
<tr>
<td>Figure 6-5</td>
<td>Conceptual models of off-line processes, Part II</td>
<td>96</td>
</tr>
<tr>
<td>Figure 7-1</td>
<td>The elements of the CAS system</td>
<td>106</td>
</tr>
<tr>
<td>Figure 7-2</td>
<td>A functional model of on-line processes</td>
<td>110</td>
</tr>
<tr>
<td>Figure 7-3</td>
<td>A functional model of off-line processes</td>
<td>121</td>
</tr>
<tr>
<td>Figure 7-4</td>
<td>The implementation of on-line processes</td>
<td>123</td>
</tr>
<tr>
<td>Figure 7-5</td>
<td>The implementation of stock transfers between stores</td>
<td>143</td>
</tr>
<tr>
<td>Figure 7-6</td>
<td>The implementation of inward goods and miscellaneous stock usage processes</td>
<td>144</td>
</tr>
<tr>
<td>Figure 7-7</td>
<td>The implementation of stock take</td>
<td>145</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>Prediction of relative performance</td>
<td>152</td>
</tr>
<tr>
<td>Figure 8-2</td>
<td>Process time versus batch size for each operation in Trial 1</td>
<td>158</td>
</tr>
<tr>
<td>Figure 8-3</td>
<td>Process time versus batch size for each operation in Trial 2</td>
<td>160</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4-1</td>
<td>The Product-Process matrix</td>
<td>21</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Average process-time results for Trial 1</td>
<td>156</td>
</tr>
<tr>
<td>Table 8-2</td>
<td>Errors made during Trial 1</td>
<td>157</td>
</tr>
<tr>
<td>Table 8-3</td>
<td>Average process-time results for Trial 2</td>
<td>159</td>
</tr>
<tr>
<td>Table 8-4</td>
<td>Errors made during Trial 2</td>
<td>159</td>
</tr>
<tr>
<td>Table 8-5</td>
<td>Assembly time as a percentage of production time</td>
<td>161</td>
</tr>
<tr>
<td>Table 8-6</td>
<td>Relative assembly times</td>
<td>161</td>
</tr>
<tr>
<td>Table A-1</td>
<td>The structure of the CAS Database</td>
<td>171</td>
</tr>
<tr>
<td>Table D-1</td>
<td>Structure of the Work In Progress (WIP) database</td>
<td>186</td>
</tr>
<tr>
<td>Table D-2</td>
<td>Structure of the Assembly Order database</td>
<td>187</td>
</tr>
<tr>
<td>Table D-3</td>
<td>Structure of the Allocated-Stock database</td>
<td>188</td>
</tr>
<tr>
<td>Table I-1</td>
<td>Complete process-time results for Trial 1</td>
<td>203</td>
</tr>
<tr>
<td>Table I-2</td>
<td>Complete process-time results for Trial 2</td>
<td>203</td>
</tr>
</tbody>
</table>
List of Exhibits

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit 7-1 <PCB>.INS file editor</td>
<td>128</td>
</tr>
<tr>
<td>Exhibit 7-2 The Wet Line</td>
<td>136</td>
</tr>
<tr>
<td>Exhibit 7-3 Assembly workstations</td>
<td>138</td>
</tr>
<tr>
<td>Exhibit 7-4 Assembly prompting system</td>
<td>139</td>
</tr>
</tbody>
</table>