Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
DEXTRAN ENZYME IMINE COMPLEXES: A PRELIMINARY STUDY

This thesis was presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

Louisa Jane Fisher
1997
ABSTRACT

A model system involving the formation of protein-dextran complexes has been investigated with a view to improving existing methods of drug administration. Activation of the dextran was achieved by periodate oxidation to give levels of 7%, 21% and 56% activated glucose moieties. The protein-dextran complexes were investigated with the prospect of obtaining sustained release of proteins from the dextran in an unmodified form. Covalent conjugation of proteins to carbohydrate polymers is known to confer stability on the protein. The proteins in this study were bound to the dextran through imine bonds. The proteins investigated were lysozyme, trypsin, amylase, alcohol dehydrogenase and catalase. The selection covered a range of molecular weights and varying enzymatic activities.

As might be predicted, the speed of complex formation was shown to be greater at the 21% level of activation compared to the 7% activation of dextran in all cases studied.

Lysozyme, the smallest protein, readily formed complexes at all three levels of activation. At the 56% level the resulting complex had an extremely high MW, greater than 1MDa. The extensive binding between the dextran and lysozyme molecules resulted in a complex that was inactive and showed no signs of releasing any lysozyme, active or inactive. At the lower levels of activation, complex was formed with relative ease. Upon conjugation lysozyme exhibited only minimal activity. Release of a lysozyme-like species with normal lytic activity was observed.

Precautions were taken to minimise possible autolysis in the trypsin study. Once complexed it was postulated that autolysis would be prevented or minimised. Similarly the 56% level of activation appeared to be too high to obtain a viable complex for facile trypsin release. Sustained release of a trypsin-like protein was observed with complexes at the 7% and 21% levels. SEC and SDS-PAGE, in conjunction with a positive BAPNA assay gave support to the released species being trypsin-like. While complexed to the dextran trypsin showed no signs of activity. Released trypsin-like species and unreacted trypsin showed similar tryptic maps from a synthetic peptide, the peptide was designed to show distinctive fragments.

α-Amylase, twice the MW of trypsin and over three times the MW of lysozyme, formed complexes with ease at both 7% and 21% levels of activation. Conjugation to dextran did not effect the activity of α-amylase. Over time the release of an α-amylase-like species from the complex was observed.
Alcohol dehydrogenase and catalase are both high MW proteins. Complex formation was observed for each protein. Subsequent experiments showed that upon release the proteins appeared to dissociate, most probably into their subunits. It is also possible that the dimers and monomers bound to the dextran. The main advantage of conjugation in this case appeared to be to confer stability on the proteins. The ADH-complex exhibited enzymatic activity.

At 7% and 21% activation levels the lower MW proteins formed complexes with dextran that exhibited release of a protein species. The higher MW proteins were possibly stabilised when conjugated to dextran, but dissociated upon release. Investigations have shown that the level of activation chosen affects the extent of binding and therefore the functions of the resultant complex. Thus activation levels can be manipulated depending on the desired result. While lower dextran activation levels appeared to be more suited for smaller MW proteins, there were indications that the larger MW proteins could form beneficial complexes at higher activation levels. Results indicated that conjugation to periodate activated dextran could be extended to further proteins with the possibility of therapeutic or commercial applications.
ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Associate Professor David R.K. Harding for his time, input and encouragement over the last two years.

I would also like to acknowledge Debbie Frumau for running my amino acid analysis samples, and Dick Poll for his constant help with the FPLC and SMART systems. Thanks are also due to Associate Professor D.N. Pinder and Dr J. Lewis for their time and help with the LLST and Ultracentrifugation experiments respectively.

Special thanks and appreciation to Rekha Parshot and Jenny Cross for the SPPS and purification.

Thank you also to J. Battersby, Genentech Inc., South San Francisco, for assistance and suggestions with the tryptic digest studies, and for running the HPLC of the trypsin as well as for the gifted rhGH and the rough sketch that lead to Figure 1.8.2.

I would also like to thank the Departments of Biochemistry and Chemistry for their assistance along the way, especially the members of the Centre for Separation Science and Gill Norris’s lab.

Finally I would like to thank my parents and friends, in particular Suzette, Ruth, Kimberley and Morris for putting up with me especially through the last stages of my thesis.
TABLE OF CONTENTS

Abstract .. ii
Acknowledgements .. iv
Table of Contents .. v
List of Figures .. viii
List of Tables and Schemes .. x
List of Abbreviations .. xi

CHAPTER ONE INTRODUCTION

1.1 Drug Delivery .. 1
1.2 Controlled Release of Drugs .. 2
1.3 Encapsulation .. 3
1.4 Non-reversible Covalent Bonding ... 4
1.5 Sustained Release of rhGH from Dextran ... 5
1.6 Periodate Oxidation of Dextran ... 6
1.7 Imine Formation .. 9
1.8 Complex Formation of Proteins with Dextran .. 10
1.9 Protein Modification .. 13
1.10 Investigations into Complex Formation of Proteins to Dextran and Subsequent Release ... 14

CHAPTER TWO MATERIALS AND METHODS

2.1 Reagents and Equipment .. 16
2.2 Periodate Oxidation ... 17
2.3 Iodometric Titration ... 17
2.4 Complex Formation ... 17
2.5 Complex Release .. 18
2.6 Complex Reduction Studies .. 18
2.7 Lysozyme Lytic Assay ... 18
2.8 Laser Light Scattering ... 19
2.9 Ultracentrifugation .. 19
2.10 Trypsin BAPNA Assay ... 19
2.11 Trypsin Digest of rhGH .. 20
2.12 Trypsin Digest of Synthetic Peptide .. 20
2.13 α-Amylase Activity .. 21
2.14 Alcohol Dehydrogenase Assay ... 21
2.15 BCA Protein Concentration Determination .. 21
2.16 Amino Acid Analysis Preparation ... 21
2.17 SDS-polyacrylamide gel electrophoresis .. 22

CHAPTER THREE LYSOZYME ... 23

3.1 Introduction ... 23
3.2 Results and Discussion .. 25
3.3 Conclusions .. 39

CHAPTER FOUR TRYPSIN .. 40

4.1 Introduction ... 40
4.2 Results and Discussion .. 42
4.3 Conclusions .. 56

CHAPTER FIVE α-AMYLASE ... 60

5.1 Introduction ... 60
5.2 Results and Discussion .. 62
5.3 Conclusions .. 71

CHAPTER SIX ALCOHOL DEHYDROGENASE AND CATALASE 72

6.1 Introduction ... 72
 6.1.1 Alcohol Dehydrogenase ... 72
 6.1.2 Catalase .. 72
 6.1.3 Higher MW Proteins ... 73
6.2 Results and Discussion .. 74
 6.2.1 ADH Complex Formation .. 74
 6.2.2 Catalase Complex Formation .. 74
 6.2.3 Complex Formation ... 74
 6.2.4 ADH-dextran Complex and Release Investigations 77
 6.2.5 Catalase Release .. 85
6.3 Conclusions .. 86
CHAPTER SEVEN

CONCLUSION AND FUTURE WORK ... 88
 7.1 Conclusions ... 88
 7.2 Future work .. 90

REFERENCES ... 93
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.6.1</td>
<td>Molecular weight distribution by gel filtration of Dextran T-40</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.6.2</td>
<td>Periodate oxidation of Dextran</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.6.3</td>
<td>Overall reaction individual glucose molecule periodate oxidation</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.8.1</td>
<td>Extent of complex formation over increasing dextran activation levels for 24hr period</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.8.2</td>
<td>Possible structure of protein dextran complex</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3.1.1</td>
<td>Laser light scattering apparatus</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.1.2</td>
<td>Diagram of a Schlieren pattern of a homogeneous solution</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.2.1</td>
<td>Complex (†) formation over time for lysozyme (†) and 56% activated dextran</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.2.2</td>
<td>Expected progress with time of Schlieren peak</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.2.3</td>
<td>Complex (†) formation over time between lysozyme (†) and 7% activated dextran</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.2.4</td>
<td>Complex (†) formation over time between lysozyme (†) and 21% activated dextran</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.2.5</td>
<td>Release of lysozyme-like (†) species from complex (†) (lysozyme-21% activated dextran) over time</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.2.6</td>
<td>SDS-Page</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.2.7</td>
<td>Lysozyme activity</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.2.8</td>
<td>Activity of lysozyme complex with time</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.2.9</td>
<td>Complex formation at 72hrs for reduced and non-reduced complexes</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.2.10</td>
<td>Lytic activity of reduced and non-reduced complexes</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.1.1</td>
<td>BAPNA assay for trypsin activity</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.2.1</td>
<td>Complex (†) formation over time between trypsin (†) and 7% activated dextran</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.2.2</td>
<td>Complex (†) formation over time between trypsin (†) and 21% activated dextran</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.2.3</td>
<td>Release of trypsin-like species (†) from the complex (†)</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.2.4</td>
<td>Trypsin activity</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.2.5</td>
<td>Activity of trypsin-dextran complex over time</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.2.6</td>
<td>Analytical reverse phase chromatography of the released trypsin-like species and the original trypsin</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.2.7</td>
<td>SDS-PAGE analysis</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.2.8</td>
<td>Activity studies on reduced and non-reduced complexes</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.2.9</td>
<td>Reverse-phase analytical run of the synthetic peptide</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 4.2.10 HPLC chromatograph of trypsin digest on the 24mer by the original trypsin.

Figure 4.2.11 HPLC chromatograph of trypsin digest on the 24mer by the released trypsin-like species.

Figure 5.1.1 Theoretical basis of α-amylase assay procedure

Figure 5.2.1 Complex (†) formation over time between α-amylase (↑) and 7% activated dextran

Figure 5.2.2 Complex (†) formation over time between α-amylase (↑) and 21% activated dextran

Figure 5.2.3 Release of α-amylase-like species (↑) from the dextran complex (†) over time

Figure 5.2.4 Activity of α-amylase

Figure 5.2.5 SDS Homogenous gel

Figure 5.2.6 Activity of amylase complex over time

Figure 5.2.7 Comparison of activities for reduced and non-reduced complexes

Figure 6.2.1.1 Complex (†) formation over time for ADH (↑) and 7% activated dextran

Figure 6.2.1.2 Complex (†) formation over time for ADH (↑) and 21% activated dextran

Figure 6.2.2.1 Complex (†) formation over time for catalase (↑) and 7% activated dextran

Figure 6.2.2.2 Complex (†) formation over time for Catalase (↑) and 21% activated dextran

Figure 6.2.4.1 Complex Formation at 48 Hours between ADH and 7% Activated Dextran

Figure 6.2.4.2 Activity assays performed on isolated fractions from ADH-7% dextran complex from figure 6.2.4.1

Figure 6.2.4.3 Release from ADH-7% complex (†) over time

Figure 6.2.4.4 ADH Activity

Figure 6.2.4.5 SDS- PAGE analysis

Figure 6.2.4.6 ADH Reduction studies

Figure 6.2.5.1 Release studies for catalase-21% activated dextran complex (†)
LIST OF TABLES AND SCHEMES

<table>
<thead>
<tr>
<th>Table/Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.10.1</td>
<td>Molecular weight range of proteins for dextran complex formation study</td>
<td>14</td>
</tr>
<tr>
<td>Scheme 3.2.1</td>
<td>Equilibrium between free protein and dextran</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.2.1</td>
<td>Amino acid composition in respect to alanine of the released species in comparison to purified lysozyme and literature sequence</td>
<td>34</td>
</tr>
<tr>
<td>Scheme 3.2.2</td>
<td>Cyanoborohydride reduction of protein-dextran complex</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.2.1</td>
<td>Specific activity for the trypsin complex samples and the release trypsin-like species</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.2.2</td>
<td>Amino acid composition with respect to alanine of the released species in comparison to purified trypsin and the literature sequence</td>
<td>48</td>
</tr>
<tr>
<td>Scheme 4.2.1</td>
<td>Sequence of the 24mer, synthetic peptide</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.2.3</td>
<td>AAA of the synthetic peptide</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.2.4</td>
<td>AAA composition of peptides from trypsin digest</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.2.5</td>
<td>Summary of synthetic peptide digestion</td>
<td>58</td>
</tr>
<tr>
<td>Table 5.2.1</td>
<td>Specific activity</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.2.2</td>
<td>Amino acid composition of α-amylase and release species</td>
<td>69</td>
</tr>
<tr>
<td>Table 6.2.4.1</td>
<td>Specific activity comparison for ADH-dextran complex</td>
<td>80</td>
</tr>
<tr>
<td>Table 6.2.4.2</td>
<td>Amino acid compositions with respect to alanine</td>
<td>81</td>
</tr>
<tr>
<td>Scheme 6.2.4.1</td>
<td>Possible reactions occurring with ADH-dextran incubations</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>amino acid analysis</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>ADH</td>
<td>alcohol dehydrogenase</td>
</tr>
<tr>
<td>BAPNA</td>
<td>N-α-benzoyl-DL-arginine-p-nitroanilide HCl</td>
</tr>
<tr>
<td>BPNPG-7</td>
<td>blocked p-nitrophenyl maltoheptaoside</td>
</tr>
<tr>
<td>CD4</td>
<td>cell surface glycoprotein receptor for HIV</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DOR</td>
<td>double oxidised residues</td>
</tr>
<tr>
<td>FMOC</td>
<td>fluorenlymethoxycarbonyl</td>
</tr>
<tr>
<td>GI tract</td>
<td>gastro-intestinal tract</td>
</tr>
<tr>
<td>GP120</td>
<td>glycoprotein-120</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast performance liquid chromatography</td>
</tr>
<tr>
<td>LLST</td>
<td>laser light scattering technique</td>
</tr>
<tr>
<td>met-hGH</td>
<td>recombinant methionyl human growth hormone</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>sodium borohydride</td>
</tr>
<tr>
<td>NaBH₃CN</td>
<td>sodium cyanoborohydride</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide (oxidised form)</td>
</tr>
<tr>
<td>mPEG</td>
<td>monomethoxypoly(ethylene glycol)</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PNP</td>
<td>purine nucleoside phosphorylase</td>
</tr>
<tr>
<td>rhGH</td>
<td>recombinant human growth hormone</td>
</tr>
<tr>
<td>rIGF-1</td>
<td>recombinant human insulin-like growth factor</td>
</tr>
<tr>
<td>rIL-2</td>
<td>recombinant human interleukin-2</td>
</tr>
<tr>
<td>rtPA</td>
<td>recombinant human tissue plasminogen activator</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate - polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEC</td>
<td>size exclusion chromatography</td>
</tr>
<tr>
<td>SPPS</td>
<td>solid phase peptide synthesis</td>
</tr>
<tr>
<td>Tris</td>
<td>tris-(hydroxymethyl-)aminomethane</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TPCK</td>
<td>L-1-tosylamide-2-phenylethyl chloromethyl ketone</td>
</tr>
</tbody>
</table>
Abbreviations used for amino acids:

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
</tr>
<tr>
<td>Asx</td>
<td>asparagine and aspartic acid</td>
</tr>
<tr>
<td>Glx</td>
<td>glutamine and glutamic acid</td>
</tr>
</tbody>
</table>