Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Determination of Individual Sugars and Organic Acids of New Zealand Varietal Apple Juice and Their Use in Evaluating Authenticity.

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN FOOD TECHNOLOGY AT MASSEY UNIVERSITY - NEW ZEALAND.

GARRY CHARLES RADFORD

1997
ABSTRACT

High pressure liquid chromatography techniques were used to determine sugars and acids in the juice of apples grown in New Zealand. A total of 189 samples were analysed and the results were used to assist with the determination of the authenticity of New Zealand apple juice. The values obtained were compared to other literature values and criteria used to determine authenticity of apple juice. As a number of factors affect the composition of juice, the data was gathered from a number of apple cultivars commonly grown in New Zealand, from different growing regions over two seasons, with the fruit harvested at the three maturities used in juice production. Fruit is also stored for varying lengths of time under different conditions for juice production at a later date, and therefore such samples were included in the testing.

In the apple juices tested the Brix ranged from 8.3 to 15.3 and titratable acidity (calculated as malic acid) from 210 to 1130mg/100ml. Fructose and sorbitol ranged from 4.0 to 8.6g/100ml and 0.13 to 1.4g/100ml respectively. Of the cultivars examined, Granny Smith, Red Delicious, Golden Delicious and Fuji were observed to have sucrose and glucose present at less than 3.5g/100ml which is a commonly reported literature maximum for authentic apple juice. Cox's Orange apple juice was observed to have sucrose levels typically in excess of 3.0 g/100ml for first pick fruit and in excess of 5.0g/100ml, for second and third pick fruit. One sample of this cultivar had the highest sucrose level of 7.5g/100ml seen in the study, and on average was found to have sucrose present at 4.9g/100ml. Cox's Orange apple juice generally had the lowest glucose level with levels typically less than 1.1g/100ml. Braeburn apple juice was observed to have sucrose present at levels frequently in excess of 4.0g/100ml in 1992 and 3.0g/100ml in 1993. Storage trials of this cultivar showed that it was not until the fruit had been stored for prolonged periods (45, 149 and 195 days at ambient, cold and controlled atmosphere conditions respectively) that the sucrose levels of the juice decreased to the 3.5g/100ml referred to above for authentic juice. Royal Gala, Gala, Hillwell, Fiesta, GS330 and GS2850 generally had sucrose levels ranging from 2.0 to 5.0g/100ml.
Malic acid was the most predominate acid present with levels of between 231 and 1067mg/100ml. Quinic and succinic acids were present at levels of 22 to 129mg/100ml and 8 to 41mg/100ml respectively, with succinic acid present at levels four times those that are commonly reported. Citric and shikimic acid levels were typically below 20 and 3.5mg/100ml respectively while fumaric acid never exceeded 0.22mg/100ml.

The juice of cold stored fruit was observed to have succinic and citric acids at levels greater than those observed from ambient and controlled atmosphere storage. The level of fumaric acid in the juice of ambient stored Braeburn fruit showed a marked increase from 0.06mg/100ml to 0.22mg/100ml during storage. Small increases of about 0.03mg/100ml were seen for cold and controlled atmosphere stored Braeburn fruit. Similar trends were observed in the juice of stored Granny Smith fruit.

The application of Brause and Raterman (1982) and the German RSK criteria for authentic apple juice to New Zealand varietal apple juice showed that the cultivars Granny Smith, Red Delicious, Golden Delicious and Fuji produced juice that could be considered authentic. Braeburn, Gala, Royal Gala, Cox's Orange, Hillwell, GS330, GS2850 and Fiesta were observed to have at least one component outside the proposed standard ranges, with some samples exceeding the 95% confidence levels and juices from all would often be considered as "not authentic".

The use of overseas sucrose and glucose levels and their ratios for authentication of juices from all New Zealand apple varieties is inappropriate because values outside of the published guidelines for authenticity were frequently found. The use of criteria for authentication can only be applied to juice from which the standard values are derived. Application of standard values to juices from other regions, cultivars or even years could lead to authentic juice being rejected. While published criteria for authentic juice are a starting point, their application is inappropriate for some cultivars grown New Zealand. If they are applied to New Zealand apple juice the assessment of the juice data needs to be undertaken by an expert or group of experts who have knowledge of juices (rather than the
limited information which is available in the RSK values and commentaries) to be sure that any abnormalities in the data are recognised.
Acknowledgements

I wish to sincerely thank my supervisor Mr. Malcolm Reeves for all valuable advice, guidance and time.

Special thanks go to the people at ENZA Processors in particularly Mr. Jon Marks and Mr. James Wilson (formerly of ENZA) who initiated this project, supplied funding for equipment, as well as arranging for apple samples. Other people who deserve thanking are Miss Anna Parsons, Mr. Russell Murtagh and Mr. Rod Quin who collected the apple samples.

Thanks are extend to the following: Professor Ray Winger who allowed me to carry out the project; Ms Lisa Duizer for her help with use of statistical programs; Ms. June Latham for assistance with HPLC; Mr. Byron McKillop who manufactured specialised equipment; Mr John O’Connor and Mr. Mark Dorsey for helpful advice with computing.

I also appreciate the moral support given by Yuly Indrawati and Bongkot Nippon and other fellow post graduates.

I would also like to thank the academic and technical staff of the Department of Food Technology for encouragement during those difficult times.

Finally I would like to give a big thank-you to my flatmate Miss Fiona Matheson who kindly read this thesis, supplied helpful advice and gave a lot of support and encouragement.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vi

LIST OF TABLES .. xii

LIST OF FIGURES ... xix

LIST OF APPENDICES ... xxviii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 4

2.1 Composition of Apple and Apple Juice 4

2.1.1 Sugars .. 4

2.1.2 Organic Acids ... 5

2.1.3 Starch ... 8

2.1.4 Phenolic Compounds 8

2.1.5 Amino Acids .. 8

2.1.6 Minerals ... 9

2.2 Synthesis of Carbohydrates 9

2.2.1 Photosynthesis ... 9

2.2.2 Sorbitol .. 11

2.2.3 Sucrose Synthesis 12

2.2.4 Starch Synthesis .. 12
Table of Contents

2.3 **Synthesis and Metabolism of Organic Acids** .. 13

2.4 **Physiology and Biochemistry of Fruit** ... 14
 2.4.1 **Changes During Fruit Development and Ripening** 15
 2.4.2 **Respiration** .. 18
 2.4.2.1 **Respiratory Climacteric** ... 18
 2.4.2.2 **Effects of Ethylene** ... 18

2.5 **Factors Affecting the Composition of Apple Juice** 19
 2.5.1 **Growing Season** .. 19
 2.5.1.1 **Sugars** ... 19
 2.5.1.2 **Organic Acids** .. 20
 2.5.2 **Growing Region** .. 21
 2.5.2.1 **Sugars** ... 21
 2.5.2.2 **Organic Acids** .. 22
 2.5.3 **Cultivar** .. 23
 2.5.3.1 **Sugars** ... 23
 2.5.3.2 **Organic Acids** .. 24
 2.5.4 **Time of Harvest** ... 25
 2.5.5 **Storage of Apples** .. 26
 2.5.5.1 **Ambient Storage** .. 26
 2.5.5.2 **Cold Storage** ... 26
 2.5.5.3 **Controlled Atmosphere Storage** ... 27
 2.5.6 **Changes During Storage** ... 27
 2.5.6.1 **Sugars** ... 27
 2.5.6.2 **Organic Acids** .. 28
 2.5.7 **Processing** ... 30
 2.5.8 **Natural Variability** .. 31
 2.5.8.1 **Sugars** ... 31
 2.5.8.2 **Organic Acids** .. 31
Table of Contents

2.6 Methods and Criteria for the Determination of Adulterated Apple Juice

2.6.1 Reference Samples 32
2.6.2 RSK Values .. 33
2.6.3 Sugar Profiles 37
2.6.4 Component Ratios 38
 2.6.4.1 Fructose/Glucose Ratio 39
 2.6.4.2 Sugars/Total Sugars by Summation 40
 2.6.4.3 Sugar/(Total Sugars by Summation +Sorbitol) 41
2.6.5 Organic Acid Profiles 41
2.6.6 Statistical Methods 43
2.6.7 Isotopic Methods 46
 2.6.7.1 Use of 13C/12C Ratios 46
 2.6.7.2 Use of D/H and 18O/16O Ratios 48
2.6.8 Use of Amino Acids 49
2.6.9 Use of Absorbance and Fluorescence Spectral Characteristics 49
2.6.10 Use of Phenolics 49

2.7 Analysis of Sugar and Organic Acids in Apple Juice by HPLC 49

2.7.1 Sample Pretreatment 50
 2.7.1.1 Sample Pretreatment for Sugar Analysis 51
 2.7.1.2 Sample Pretreatment for Organic Acid Analysis 52
2.7.2 Detection System in Juice Analysis 52
 2.7.2.1 Refractive Index Detectors 52
 2.7.2.2 Ultraviolet Detectors 53
2.7.3 HPLC Columns for the Separation of Sugars and Organic Acids 54
2.7.4 HPLC Operating Conditions 56
 2.7.4.1 Mobile Phase 56
 2.7.4.2 Flow Rate 56
 2.7.4.3 Temperature 57
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.5</td>
<td>Quantification of Peaks</td>
<td>57</td>
</tr>
<tr>
<td>2.7.5.1</td>
<td>Calibration Curves</td>
<td>57</td>
</tr>
<tr>
<td>2.7.5.2</td>
<td>Peak Height and Peak Area</td>
<td>57</td>
</tr>
<tr>
<td>2.7.5.3</td>
<td>Internal and External Standards</td>
<td>58</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Precision</td>
<td>58</td>
</tr>
</tbody>
</table>

CHAPTER 3 MATERIALS AND METHODS

3.1 Sampling Procedures | 59 |
3.2 Apple Juice Extraction | 61 |
3.3 HPLC Analysis of Sugars | 62 |
3.3.1 Liquid Chromatography System | 62 |
3.3.2 Calibration Curves | 63 |
3.3.3 Sample Preparation | 63 |
3.3.4 Separation of Organic Acids by the Addition of Aluminium Oxide | 63 |
3.3.5 Quantification of Peaks | 64 |
3.4 HPLC Analysis of Organic Acids | 64 |
3.4.1 Liquid Chromatography System | 64 |
3.4.2 Calibration Curves | 65 |
3.4.3 Sample Preparation | 65 |
3.4.4 Quantification of Peaks | 65 |
3.5 Sep-Pak®C₁₈ Cartridge Activation and Regeneration | 66 |
3.6 Soluble Solids, pH, Titratable Acidity | 66 |
3.7 Sample Variability | 67 |
3.8 Statistical Analysis of Data | 67 |

CHAPTER 4 RESULTS AND DISCUSSION

SUGAR COMPOSITION | 68 |

4.1 Average Composition | 68 |
4.2 Braeburn | 74 |
Table of Contents

4.2.1 Storage ... 75
4.2.2 Data as Percentage of the Total Sugars by Summation 81
4.3 Granny Smith .. 82
4.3.1 Storage ... 83
4.3.2 Data as Percentage of the Total Sugars by Summation 84
4.4 Cox's Orange ... 88
4.5 Gala ... 90
4.6 Royal Gala ... 92
4.7 Golden Delicious .. 93
4.8 Fuji and Red Delicious 94
4.9 Hillwell, GS330, GS2850 and Fiesta .. 95
4.10 Statistical Analysis of Data 96
 4.10.1 Sample Variation 96
 4.10.2 Cultivar ... 97
 4.10.3 Region .. 99
 4.10.4 Year .. 100
 4.10.5 Stage of Harvest 101
4.11 Conclusion ... 102

CHAPTER 5 RESULTS AND DISCUSSION
ORGANIC ACID COMPOSITION 108

5.1 Total Acids, Titratable Acidity and pH 108
5.2 Malic Acid ... 117
5.3 Quinic Acid .. 123
5.4 Succinic Acid ... 126
5.5 Citric Acid ... 130
5.6 Shikimic Acid ... 136
5.7 Fumaric Acid .. 139
5.8 Hillwell, GS330, GS2850 and Fiesta 142
5.9 Sample Variation .. 142
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>Conclusion</td>
<td>142</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>GENERAL CONCLUSION</td>
<td>145</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>145</td>
</tr>
<tr>
<td>6.2</td>
<td>Sugar Standards and New Zealand Apple Juices</td>
<td>145</td>
</tr>
<tr>
<td>6.3</td>
<td>Required Sugar Standards for New Zealand Juices</td>
<td>148</td>
</tr>
<tr>
<td>6.4</td>
<td>Organic Acid Standards and New Zealand Apple Juices</td>
<td>148</td>
</tr>
<tr>
<td>6.5</td>
<td>Future Methods</td>
<td>150</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>APPENDICES</td>
<td>167</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Sugar content of different cultivars grown in the same region 24
Table 2.2 Apple juice matrix for detecting adulteration. 45
Table 3.1 The sampling regime and the numbers of sample collected for each cultivar .. 60
Table 4.1 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual sugar concentrations of Braeburn apple juices sampled on the same day from Hawke's Bay in 1993 97
Table 4.2 Least-squared means (lsmeans) of individual sugars and related components in the juice of eight apple cultivars 99
Table 4.3 Least-squared means of individual sugars and related components in the juice of apple cultivars grown in three regions of New Zealand 100
Table 4.4 Least-squared means of individual sugars and related components in the juice of apple cultivars sampled over two growing seasons 100
Table 4.5 Least-squared means of individual sugars and related components in the juice of apple cultivars harvested at different maturities 101
Table 5.1 Least-squared means (lsmeans) for pH, total acids and titratable acidity in the juice of eight apple cultivars 112
Table 5.2 Least-squared means for pH, total acids and titratable acidity in the juice of apple cultivars grown in three regions of New Zealand 113
Table 5.3 Least-squared means for pH, total acids and titratable acidity in the juice of apple cultivars sampled over two growing seasons 113
Table 5.4 Least-squared means for pH, total acids and titratable acidity in the juice of apple cultivars harvested at different maturities 113
Table 5.5 Least-squared means (lsmeans) for malic, quinic and succinic acids in the juice of eight apple cultivars 119
Table 5.6 Least-squared means for malic, quinic and succinic acids in the juice of apple cultivars grown in three regions of New Zealand 119
Table 5.7 Least-squared means for malic, quinic and succinic acids in the juice of apple cultivars sampled over two growing seasons 120
Table 5.8 Least-squared means for malic, quinic and succinic acids in the juice of apple cultivars harvested at different maturities 120
Table 5.9 The percentage decrease of malic acid in the juice of stored Braeburn and Granny Smith apples 121
Table 5.10 Least-squared means (lsmeans) for citric, shikimic and fumaric acids in the juice of eight apple cultivars 133
Table 5.11 Least-squared means for citric, shikimic and fumaric acids in the juice of apple cultivars grown in three regions of New Zealand 133
Table 5.12 Least-squared means for citric, shikimic and fumaric acids in the juice of apple cultivars sampled over two growing seasons 134
Table 5.13 Least-squared means for citric, shikimic and fumaric acids in the juice of apple cultivars harvested at different maturities 134
Table A1.1 Literature data for the composition of apple juice 168
Table A2.1 RSK values for authentic apple juice 173
Table A3.1 Retention times of carbohydrates separated on a Shodex SC1011 column .. 175
Table A6.1 Amount of malic acid removed by sequential and single addition of aluminium oxide 185
Table A8.1 Linear regression coefficients for sucrose, glucose, fructose and sorbitol at varying concentrations 194
Table A8.2 Comparisons of peak heights with peak areas for sucrose 194
Table A8.3 Comparisons of peak heights with peak areas for glucose 195
Table A8.4 Comparisons of peak heights with peak areas for fructose 195
Table A8.5 Comparisons of peak heights with peak areas for sorbitol 196
Table A9.1 Summary of two way analysis of variance on normalised data for sucrose, glucose, fructose and sorbitol standards 199
Table A9.2 Summary of two way analysis of variance for sucrose, glucose, fructose and sorbitol in apple juice samples 200
Table A10.1 Recoveries of sucrose, glucose, fructose and sorbitol in diluted apple juice 202
List of Tables

Table A10.2 Recoveries of sucrose, glucose, fructose and sorbitol in diluted apple juice spiked with varying concentrations of individual sugars ... 203

Table A11.1 Retention times of organic acids and sugars using a Spheri-5 reverse phase C\textsubscript{18} and Polypore-H columns in series maintained at 31 to 32°C with a mobile phase of 0.01M phosphoric acid at a flow rate of 0.25ml/min and detection at 210nm. .. 205

Table A12.1 Absorbance of a 10% (w/v) glucose, sucrose and fructose solution at 210nm and 214nm 206

Table A12.2 Retention times of organic acids and sugars using a mobile phase of 0.005M sulphuric acid at a flow rate of 0.5ml/min and Spheri-5 reverse phase C\textsubscript{18} and Spheri-5 ODS reverse phase C\textsubscript{18} columns in series maintained at 22°C with detection at 214nm 208

Table A12.3 Effect of changes in mobile phase flow rates and column temperature on separation of organic acids and fructose .. 210

Table A13.1 Retention times of organic acids and sugars using a mobile phase of 0.005M sulphuric acid at a flow rate of 0.4ml/min for 20 minutes followed by 0.8ml/min for 10 minutes and Spheri-5 reverse phase C\textsubscript{18} and Spheri-5 ODS reverse phase C\textsubscript{18} columns in series maintained at 22°C with detection at 214nm 213

Table A14.1 Linear regression coefficients (R2) for malic, quinic, shikimic, citric, succinic and fumaric acids .. 215

Table A15.1 Comparison of peak heights with peak areas for individual organic acids .. 220

Table A17.1 Recoveries of added quinic, malic, shikimic, citric, succinic and fumaric acids in apple juice spiked with known concentrations of individual organic acids .. 222

Table A18.1 Minimum, maximum, mean, standard deviation and coefficient of variation in the sugar concentrations of all cultivars combined to give the "average composition of natural apple juice" .. 224

Table A19.1 Individual sugar concentrations in the juice of Hawke's Bay Braeburn apples that were stored at different conditions in 1992 .. 226
List of Tables

Table A19.2 Individual sugar concentrations in the juice of Hawke's Bay Braeburn apples that were stored at different conditions in 1993 227
Table A19.3 Individual sugar concentrations in the juice of Braeburn apples that were harvested at commercial maturity .. 228
Table A19.4 Variation in the individual sugar concentrations in the juice of Braeburn apples harvested from different positions on a tree, different trees and orchards, different bins present in the processing yard and different positions within a bin 228
Table A19.5 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual sugar concentrations of Braeburn apple juice .. 230
Table A20.1 Individual sugar concentrations in the juice of Hawke's Bay Granny Smith apples that were stored at different conditions in 1992 232
Table A20.2 Individual sugar concentrations in the juice of Hawke's Bay Granny Smith apples that were stored at different conditions in 1993 233
Table A20.3 Individual sugar concentrations in the juice of Granny Smith apples that were harvested at commercial maturity .. 234
Table A20.4 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual sugar concentrations of Granny Smith apple juice .. 235
Table A21.1 Individual sugar concentrations in the juice of Hawke's Bay Gala apples that were stored at different conditions in 1992 237
Table A21.2 Individual sugar concentrations in the juice of Gala apples that were harvested at commercial maturity .. 238
Table A21.3 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual sugar concentrations of Gala apple juice .. 239
Table A22.1 Individual sugar concentrations in the juice of Hawke's Bay Royal Gala apples that were stored at different conditions in 1992 241
Table A22.2 Individual sugar concentrations in the juice of Royal Gala apples that were harvested at commercial maturity .. 241
List of Tables

Table A22.3 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual sugar concentrations of Royal Gala apple juice ... 242
Table A23.1 Individual sugar concentrations in the juice of Red Delicious apples that were harvested at commercial maturity .. 244
Table A23.2 Individual sugar concentrations in the juice of Cox’s Orange apples that were harvested at commercial maturity .. 245
Table A23.3 Individual sugar concentrations in the juice of Golden Delicious apples that were harvested at commercial maturity .. 246
Table A23.4 Individual sugar concentrations in the juice of Fuji apples that were harvested at commercial maturity .. 247
Table A23.5 Individual sugar concentrations in the juice of Hillwell, GS330, GS2850 and Fiesta apples that were harvested at commercial maturity from Hawke’s Bay .. 248
Table A27.1 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual organic acid concentrations of all cultivars combined to give the "average composition of natural apple juice" ... 262
Table A28.1 Individual organic acid concentrations in the juice of Hawke’s Bay Braeburn apples that were stored at different conditions in 1992 264
Table A28.2 Individual organic acid concentrations in the juice of Hawke’s Bay Braeburn apples that were stored at different conditions in 1993 265
Table A28.3 Variation in the individual organic acid concentrations in the juice of Braeburn apples harvested from different positions on a tree, different trees and orchards, different bins present in the processing yard and different positions within a bin .. 266
Table A28.4 Individual organic acid concentrations in the juice of Braeburn apples that were harvested at commercial maturity 268
Table A28.5 Minimum, maximum, mean, standard deviation and coefficient of variation in the individual organic acid concentrations of Braeburn apple juice ... 268
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A29.1</td>
<td>Individual organic acid concentrations in the juice of Hawke's Bay Granny Smith apples that were stored at different conditions in 1992</td>
<td>270</td>
</tr>
<tr>
<td>A29.2</td>
<td>Individual organic acid concentrations in the juice of Hawke's Bay Granny Smith apples that were stored at different conditions in 1993</td>
<td>271</td>
</tr>
<tr>
<td>A29.3</td>
<td>Individual organic acid concentrations in the juice of Granny Smith apples that were harvested at commercial maturity</td>
<td>272</td>
</tr>
<tr>
<td>A29.4</td>
<td>Minimum, maximum, mean, standard deviation and coefficient of variation in the individual organic acid concentrations of Granny Smith apple juice</td>
<td>273</td>
</tr>
<tr>
<td>A30.1</td>
<td>Individual organic acid concentrations in the juice of Hawke's Bay Gala apples that were stored at different conditions in 1992</td>
<td>275</td>
</tr>
<tr>
<td>A30.2</td>
<td>Individual organic acid concentrations in the juice of Gala apples that were harvested at commercial maturity</td>
<td>276</td>
</tr>
<tr>
<td>A30.3</td>
<td>Minimum, maximum, mean, standard deviation and coefficient of variation in the individual organic acid concentrations of Gala apple juice</td>
<td>276</td>
</tr>
<tr>
<td>A31.1</td>
<td>Individual organic acid concentrations in the juice of Hawke's Bay Royal Gala apples that were stored at different conditions in 1992</td>
<td>278</td>
</tr>
<tr>
<td>A31.2</td>
<td>Individual organic acid concentrations in the juice of Royal Gala apples that were harvested at commercial maturity</td>
<td>278</td>
</tr>
<tr>
<td>A31.3</td>
<td>Minimum, maximum, mean, standard deviation and coefficient of variation in the individual organic acid concentrations of Royal Gala apple juice</td>
<td>279</td>
</tr>
<tr>
<td>A32.1</td>
<td>Individual organic acid concentrations in the juice of Red Delicious apples that were harvested at commercial maturity</td>
<td>281</td>
</tr>
<tr>
<td>A32.2</td>
<td>Individual organic acid concentrations in the juice of Cox's Orange apples that were harvested at commercial maturity</td>
<td>282</td>
</tr>
<tr>
<td>A32.3</td>
<td>Individual organic acid concentrations in the juice of Golden Delicious apples that were harvested at commercial maturity</td>
<td>283</td>
</tr>
</tbody>
</table>
Table A32.4 Individual organic acid concentrations in the juice of Fuji apples that were harvested at commercial maturity 284
Table A32.5 Individual organic acid concentrations in the juice of Hillwell, GS330, GS2850 and Fiesta apples that were harvested at commercial maturity from Hawke's Bay 285
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>General pathway for the synthesis and metabolism of sucrose and starch</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2</td>
<td>Schematic diagram showing the relationship between apple fruit growth and development, respiratory activity, ethylene production and storage life potential</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Typical changes in levels of fructose, sucrose, glucose and starch during ripening and storage</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Comparison of total soluble solids concentrations from published data with the RSK values for authentic apple juices</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Comparison of sucrose concentrations from published data with the RSK and Brause and Raterman (1982) values for authentic apple juices</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Comparison of glucose concentrations from published data with the RSK and Brause and Raterman (1982) values for authentic apple juices</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Comparison of fructose concentrations from published data with the RSK and Brause and Raterman (1982) values for authentic apple juices</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Comparison of sorbitol concentrations from published data with the RSK and Brause et al. (1986) values for authentic apple juices</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Comparison of fructose/glucose ratios from published data with the RSK and Brause and Raterman (1982) values for authentic apple juices</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Comparison of total soluble solids concentrations for New Zealand varietal apple juices with the RSK values</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Comparison of sucrose concentrations for New Zealand varietal apple juices with the RSK and Brause and Raterman (1982) values</td>
<td>69</td>
</tr>
</tbody>
</table>
List of Figures

Figure 4.3 Comparison of glucose concentrations for New Zealand varietal apple juices with the RSK and Brause and Raterman (1982) values ... 70

Figure 4.4 Comparison of fructose concentrations for New Zealand varietal apple juices with the RSK and Brause and Raterman (1982) values ... 70

Figure 4.5 Comparison of sorbitol concentrations for New Zealand varietal apple juices with the RSK and Brause et al. (1986) values 71

Figure 4.6 Comparison of fructose/glucose ratios for New Zealand varietal apple juices with the RSK and Brause and Raterman (1982) values ... 71

Figure 4.7 Effect on juice soluble solids concentrations of different storage regimes for Braeburn apples in 1993 77

Figure 4.8 Effect on juice sucrose concentrations of different storage regimes for Braeburn apples in 1993 77

Figure 4.9 Effect on juice glucose concentrations of different storage regimes for Braeburn apples in 1993 78

Figure 4.10 Effect on juice fructose concentrations of different storage regimes for Braeburn apples in 1993 78

Figure 4.11 Effect on juice sorbitol concentrations of different storage regimes for Braeburn apples in 1993 79

Figure 4.12 Effect on juice fructose/glucose ratios of different storage regimes for Braeburn apples in 1993 79

Figure 4.13 Effect on juice soluble solids concentrations of different storage regimes for Granny Smith apples in 1993 85

Figure 4.14 Effect on juice sucrose concentrations of different storage regimes for Granny Smith apples in 1993 85

Figure 4.15 Effect on juice glucose concentrations of different storage regimes for Granny Smith apples in 1993 86

Figure 4.16 Effect on juice fructose concentrations of different storage regimes for Granny Smith apples in 1993 86

Figure 4.17 Effect on juice sorbitol concentrations of different storage regimes for Granny Smith apples in 1993 87
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.18</td>
<td>Effect on juice fructose/glucose ratios of different storage regimes for Granny Smith apples in 1993</td>
<td>87</td>
</tr>
<tr>
<td>5.1</td>
<td>pH levels for New Zealand varietal apple juices</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Titratable acidity concentrations for New Zealand varietal apple juices</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>Total acid concentrations for New Zealand varietal apple juices</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect on juice total acid concentrations of different storage regimes for Braeburn apples in 1993</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect on juice total acid concentrations of different storage regimes for Granny Smith apples in 1993</td>
<td>114</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect on juice titratable acidity concentrations of different storage regimes for Braeburn apples in 1993</td>
<td>115</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect on juice titratable acidity concentrations of different storage regimes for Granny Smith apples in 1993</td>
<td>115</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect on juice pH of different storage regimes for Braeburn apples in 1993</td>
<td>116</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect on juice pH of different storage regimes for Granny Smith apples in 1993</td>
<td>116</td>
</tr>
<tr>
<td>5.10</td>
<td>Comparison of malic acid concentrations for New Zealand varietal apple juices with the RSK and Brause et al. (1986) values</td>
<td>118</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect on juice malic acid concentrations of different storage regimes for Braeburn apples in 1993</td>
<td>122</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect on juice malic acid concentrations of different storage regimes for Granny Smith apples in 1993</td>
<td>122</td>
</tr>
<tr>
<td>5.13</td>
<td>Quinic acid concentrations for New Zealand varietal apple juices</td>
<td>124</td>
</tr>
<tr>
<td>5.14</td>
<td>Effect on juice quinic acid concentrations of different storage regimes for Braeburn apples in 1993</td>
<td>125</td>
</tr>
<tr>
<td>5.15</td>
<td>Effect on juice quinic acid concentrations of different storage regimes for Granny Smith apples in 1993</td>
<td>126</td>
</tr>
<tr>
<td>5.16</td>
<td>Succinic acid concentrations for New Zealand varietal apple juices</td>
<td>127</td>
</tr>
</tbody>
</table>
List of Figures

Figure 5.17 Effect on juice succinic acid concentrations of different storage regimes for Braeburn apples in 1993 129

Figure 5.18 Effect on juice succinic acid concentrations of different storage regimes for Granny Smith apples in 1993 129

Figure 5.19 Comparison of citric acid concentrations for New Zealand varietal apple juices with the RSK values 131

Figure 5.20 Effect on juice citric acid concentrations of different storage regimes for Braeburn apples in 1993 135

Figure 5.21 Effect on juice citric acid concentrations of different storage regimes for Granny Smith apples in 1993 135

Figure 5.22 Shikimic acid concentrations for New Zealand varietal apple juices 137

Figure 5.23 Effect on juice shikimic acid concentrations of different storage regimes for Braeburn apples in 1993 138

Figure 5.24 Effect on juice shikimic acid concentrations of different storage regimes for Granny Smith apples in 1993 138

Figure 5.25 Fumaric acid concentrations for New Zealand varietal apple juices 140

Figure 5.26 Effect on juice fumaric acid concentrations of different storage regimes for Braeburn apples in 1993 141

Figure 5.27 Effect on juice fumaric acid concentrations of different storage regimes for Granny Smith apples in 1993 14

Figure A3.1 Separation of a standard sugar solution containing sucrose, glucose, fructose each at 6%(w/v) and sorbitol at 0.6 (w/v) 17

Figure A3.2 Separation of sugars in an untreated apple juice 1'

Figure A3.3 Separation of sugars in an apple juice treated with invertase .. 1'

Figure A4.1 Chromatogram of a 15g/l malic acid solution 1

Figure A6.1 Separation of sugars in an apple juice after treatment with aluminium oxide 1

Figure A7.1 Effect of passing varying volumes of sucrose solutions through a Sep-Pak®C18 cartridge on peak area
List of Figures

Figure A7.2 Effect of passing varying volumes of glucose solutions through a Sep-Pak®C₁₈ cartridge on peak area 188

Figure A7.3 Effect of passing varying volumes of fructose solutions through a Sep-Pak®C₁₈ cartridge on peak area 189

Figure A7.4 Effect of passing varying volumes of sorbitol solutions through a Sep-Pak®C₁₈ cartridge on peak area 189

Figure A8.1 Effect of sucrose concentrations on detector response 192

Figure A8.2 Effect of glucose concentrations on detector response 192

Figure A8.3 Effect of fructose concentrations on detector response 193

Figure A8.4 Effect of sorbitol concentrations on detector response 193

Figure A12.1 Separation of a standard solution containing fructose, quinic, malic, shikimic, citric, succinic and fumaric acids using a mobile phase of 0.005M sulphuric acid at flow rate of 0.5ml/min and Spheri-5 reverse phase C₁₈ and Spheri-5 ODS reverse phase C₁₈ columns in series maintained at 22°C with detection at 214nm 208

Figure A12.2 Separation of a standard solution containing fructose, quinic, malic, shikimic, citric, succinic and fumaric acids using a mobile phase of 0.005M sulphuric acid at flow rate of 0.8ml/min and Spheri-5 reverse phase C₁₈ and Spheri-5 ODS reverse phase C₁₈ columns in series maintained at 22°C with detection at 214nm 210

Figure A12.3 Separation of a standard solution containing fructose, quinic, malic, shikimic, citric, succinic and fumaric acids using a mobile phase of 0.005M sulphuric acid at flow rate of 0.4ml/min for 20 minutes followed by 0.8ml/min for 10 minutes using Spheri-5 reverse phase C₁₈ and Spheri-5 ODS reverse phase C₁₈ columns in series maintained at 32°C with detection at 214nm 211

Figure A13.1 Separation of sugars and organic acids in an apple juice using a mobile phase of 0.005M sulphuric acid at flow rate of 0.4ml/min for 20 minutes followed by 0.8ml/min for 10 minutes and Spheri-5 reverse phase C₁₈ and Spheri-5 ODS reverse phase C₁₈ columns in series maintained at 32°C with detection at 214nm 213
List of Figures

Figure A14.1 Effect of malic acid concentrations on detector response 215
Figure A14.2 Effect of quinic acid concentrations on detector response 216
Figure A14.3 Effect of shikimic acid concentrations on detector response 216
Figure A14.4 Effect of citric acid concentrations on detector response 217
Figure A14.5 Effect of succinic acid concentrations on detector response 217
Figure A14.6 Effect of fumaric acid concentrations on detector response 218

Figure A24.1 Effect on juice total soluble solids concentrations of different storage regimes for Braeburn apples in 1992 250
Figure A24.2 Effect on juice sucrose concentrations of different storage regimes for Braeburn apples in 1992 250
Figure A24.3 Effect on juice glucose concentrations of different storage regimes for Braeburn apples in 1992 251
Figure A24.4 Effect on juice fructose concentrations of different storage regimes for Braeburn apples in 1992 251
Figure A24.5 Effect on juice sorbitol concentrations of different storage regimes for Braeburn apples in 1992 252
Figure A24.6 Effect on juice fructose/glucose ratios of different storage regimes for Braeburn apples in 1992 252

Figure A25.1 Effect on juice total soluble solids concentrations of different storage regimes for Granny Smith apples in 1992 254
Figure A25.2 Effect on juice sucrose concentrations of different storage regimes for Granny Smith apples in 1992 254
Figure A25.3 Effect on juice glucose concentrations of different storage regimes for Granny Smith apples in 1992 255
Figure A25.4 Effect on juice fructose concentrations of different storage regimes for Granny Smith apples in 1992 255
Figure A25.5 Effect on juice sorbitol concentrations of different storage regimes for Granny Smith apples in 1992 256
Figure A25.6 Effect on juice fructose/glucose ratios of different storage regimes for Granny Smith apples in 1992 256
List of Figures

Figure A26.1 Effect on juice total soluble solids concentrations of different storage regimes for Gala and Royal Gala apples in 1992 258
Figure A26.2 Effect on juice sucrose concentrations of different storage regimes for Gala and Royal Gala apples in 1992 258
Figure A26.3 Effect on juice glucose concentrations of different storage regimes for Gala and Royal Gala apples in 1992 259
Figure A26.4 Effect on juice fructose concentrations of different storage regimes for Gala and Royal Gala apples in 1992 259
Figure A26.5 Effect on juice sorbitol concentrations of different storage regimes for Gala and Royal Gala apples in 1992 260
Figure A26.6 Effect on juice fructose/glucose ratios of different storage regimes for Gala and Royal Gala apples in 1992 260
Figure A33.1 Effect on juice total acid concentrations of different storage regimes for Braeburn apples in 1992 287
Figure A33.2 Effect on juice titratable acidity concentrations of different storage regimes for Braeburn apples in 1992 287
Figure A33.3 Effect on juice pH of different storage regimes for Braeburn apples in 1992 ... 288
Figure A33.4 Effect on juice malic acid concentrations of different storage regimes for Braeburn apples in 1992 288
Figure A33.5 Effect on juice quinic acid concentrations of different storage regimes for Braeburn apples in 1992 289
Figure A33.6 Effect on juice succinic acid concentrations of different storage regimes for Braeburn apples in 1992 289
Figure A33.7 Effect on juice citric acid concentrations of different storage regimes for Braeburn apples in 1992 290
Figure A33.8 Effect on juice shikimic acid concentrations of different storage regimes for Braeburn apples in 1992 290
Figure A33.9 Effect on juice fumaric acid concentrations of different storage regimes for Braeburn apples in 1992 291
List of Figures

Figure A34.1 Effect on juice total acid concentrations of different storage regimes for Granny Smith apples in 1992 ... 293
Figure A34.2 Effect on juice titratable acidity concentrations of different storage regimes for Granny Smith apples in 1992 293
Figure A34.3 Effect on juice pH of different storage regimes for Granny Smith apples in 1992 ... 294
Figure A34.4 Effect on juice malic acid concentrations of different storage regimes for Granny Smith apples in 1992 294
Figure A34.5 Effect on juice quinic acid concentrations of different storage regimes for Granny Smith apples in 1992 295
Figure A34.6 Effect on juice succinic acid concentrations of different storage regimes for Granny Smith apples in 1992 295
Figure A34.7 Effect on juice citric acid concentrations of different storage regimes for Granny Smith apples in 1992 296
Figure A34.8 Effect on juice shikimic acid concentrations of different storage regimes for Granny Smith apples in 1992 296
Figure A34.9 Effect on juice fumaric acid concentrations of different storage regimes for Granny Smith apples in 1992 297
Figure A35.1 Effect on juice total acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 299
Figure A35.2 Effect on juice titratable acidity concentrations of different storage regimes for Gala and Royal Gala apples in 1992 299
Figure A35.3 Effect on juice pH of different storage regimes for Gala and Royal Gala apples in 1992 ... 300
Figure A35.4 Effect on juice malic acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 300
Figure A35.5 Effect on juice quinic acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 301
Figure A35.6 Effect on juice succinic acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 301
Figure A35.7 Effect on juice citric acid concentrations of different storage
List of Figures

regimes for Gala and Royal Gala apples in 1992 302

Figure A35.8 Effect on juice shikimic acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 302

Figure A35.9 Effect on juice fumaric acid concentrations of different storage regimes for Gala and Royal Gala apples in 1992 303
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX 1</td>
<td>COMPOSITIONAL DATA FOR APPLE JUICE</td>
<td>168</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td>RSK VALUES FOR AUTHENTIC APPLE JUICE</td>
<td>173</td>
</tr>
<tr>
<td>APPENDIX 3</td>
<td>SEPARATION OF SUGARS</td>
<td>175</td>
</tr>
<tr>
<td>A3.1</td>
<td>Separation of Sugars in a Standard and in an Apple Juice</td>
<td>175</td>
</tr>
<tr>
<td>A3.1.1</td>
<td>Materials and Methods</td>
<td>175</td>
</tr>
<tr>
<td>A3.1.2</td>
<td>Results and Discussion</td>
<td>175</td>
</tr>
<tr>
<td>A3.2</td>
<td>Conclusion</td>
<td>176</td>
</tr>
<tr>
<td>APPENDIX 4</td>
<td>IDENTIFICATION OF INTERFERING PEAK IN THE QUANTIFICATION OF SUGARS IN APPLE JUICE</td>
<td>180</td>
</tr>
<tr>
<td>A4.1</td>
<td>Materials and Methods</td>
<td>180</td>
</tr>
<tr>
<td>A4.2</td>
<td>Results and Discussion</td>
<td>180</td>
</tr>
<tr>
<td>A4.3</td>
<td>Conclusion</td>
<td>180</td>
</tr>
<tr>
<td>APPENDIX 5</td>
<td>REMOVAL OF ORGANIC ACIDS FOR SUGAR QUANTIFICATION</td>
<td>182</td>
</tr>
<tr>
<td>A5.1</td>
<td>Materials and Methods</td>
<td>182</td>
</tr>
<tr>
<td>A5.2</td>
<td>Results and Discussion</td>
<td>182</td>
</tr>
<tr>
<td>APPENDIX 6</td>
<td>MODE OF ADDITION OF ALUMINIUM OXIDE</td>
<td>184</td>
</tr>
<tr>
<td>A6.1</td>
<td>Materials and Methods</td>
<td>184</td>
</tr>
<tr>
<td>A6.1.1</td>
<td>Sequential Addition</td>
<td>184</td>
</tr>
<tr>
<td>A6.1.2</td>
<td>Single Addition</td>
<td>184</td>
</tr>
<tr>
<td>A6.2</td>
<td>Results and Discussion</td>
<td>184</td>
</tr>
<tr>
<td>A6.3</td>
<td>Conclusion</td>
<td>185</td>
</tr>
</tbody>
</table>
List of Appendices

APPENDIX 7
REMOVAL OF COLOURED PIGMENTS FROM
APPLE JUICE .. 187
A7.1 Materials and Methods 187
A7.2 Results and Discussion 187
A7.3 Conclusion ... 187

APPENDIX 8
DETECTOR RESPONSE AND PRECISION FOR
SUGAR QUANTIFICATION 190
A8.1 Materials and Methods 190
A8.2 Results and Discussion 190
A8.3 Conclusion ... 191

APPENDIX 9
QUANTIFICATION OF SUGAR PEAKS 197
A9.1 Materials and Methods 197
A9.2 Results and Discussion 197

APPENDIX 10
RECOVERY OF SUGARS 201
A10.1 Materials and Methods 201
A10.2 Results and Discussion 201

APPENDIX 11
SEPARATION OF ORGANIC ACIDS 204
A11.1 Materials and Methods 204
A11.2 Results and Discussion 204

APPENDIX 12
METHOD DEVELOPMENT FOR THE SEPARATION
OF ORGANIC ACIDS .. 206
A12.1 Detector Wavelength 206
A12.1.1 Materials and Methods 206
A12.1.2 Results and Discussion 206
A12.2 HPLC Column and Mobile Phase 207
A12.2.1 Materials and Methods 207
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12.2.2</td>
<td>Results and Discussion</td>
<td>207</td>
</tr>
<tr>
<td>A12.3.2</td>
<td>Results and Discussion</td>
<td>209</td>
</tr>
<tr>
<td>A12.3.1</td>
<td>Materials and Methods</td>
<td>209</td>
</tr>
<tr>
<td>A12.3.2</td>
<td>Results and Discussion</td>
<td>209</td>
</tr>
<tr>
<td>A13.1.2</td>
<td>Results and Discussion</td>
<td>212</td>
</tr>
<tr>
<td>A13.1.1</td>
<td>Materials and Methods</td>
<td>212</td>
</tr>
<tr>
<td>A13.1.2</td>
<td>Results and Discussion</td>
<td>212</td>
</tr>
<tr>
<td>A14.2.2</td>
<td>Results and Discussion</td>
<td>214</td>
</tr>
<tr>
<td>A14.1.1</td>
<td>Materials and Method</td>
<td>214</td>
</tr>
<tr>
<td>A14.2.2</td>
<td>Results and Discussion</td>
<td>214</td>
</tr>
<tr>
<td>A15.2.2</td>
<td>Results and Discussion</td>
<td>219</td>
</tr>
<tr>
<td>A15.1.1</td>
<td>Materials and Methods</td>
<td>219</td>
</tr>
<tr>
<td>A15.2.2</td>
<td>Results and Discussion</td>
<td>219</td>
</tr>
<tr>
<td>A16.2.2</td>
<td>Results and Discussion</td>
<td>221</td>
</tr>
<tr>
<td>A16.1.1</td>
<td>Materials and Methods</td>
<td>221</td>
</tr>
<tr>
<td>A16.2.2</td>
<td>Results and Discussion</td>
<td>221</td>
</tr>
<tr>
<td>A17.2.2</td>
<td>Results and Discussion</td>
<td>222</td>
</tr>
<tr>
<td>A17.1.1</td>
<td>Materials and Methods</td>
<td>222</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Appendix 18</td>
<td>Individual sugars and related components of all cultivars combined to give the "average composition of natural apple juice"</td>
<td>223</td>
</tr>
<tr>
<td>Appendix 19</td>
<td>Individual sugars and related components for Braeburn apple juices</td>
<td>225</td>
</tr>
<tr>
<td>Appendix 20</td>
<td>Individual sugars and related components for Granny Smith apple juices</td>
<td>231</td>
</tr>
<tr>
<td>Appendix 21</td>
<td>Individual sugars and related components for Gala apple juices</td>
<td>236</td>
</tr>
<tr>
<td>Appendix 22</td>
<td>Individual sugars and related components for Royal Gala apple juices</td>
<td>240</td>
</tr>
<tr>
<td>Appendix 23</td>
<td>Individual sugars and related components for Red Delicious, Cox's Orange, Golden Delicious, Fuji, Hillwell, GS330, GS2850 and Fiesta apple juices</td>
<td>243</td>
</tr>
<tr>
<td>Appendix 24</td>
<td>Changes in the individual sugar concentrations in the juice of Braeburn apples stored at different conditions in 1992</td>
<td>249</td>
</tr>
<tr>
<td>Appendix 25</td>
<td>Changes in the individual sugar concentrations in the juice of Granny Smith apples stored at different conditions in 1992</td>
<td>253</td>
</tr>
</tbody>
</table>
APPENDIX 26 CHANGES IN THE INDIVIDUAL SUGAR CONCENTRATIONS IN THE JUICE OF ROYAL GALA AND GALA APPLES STORED AT DIFFERENT CONDITIONS IN 1992 .. 257

APPENDIX 27 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS OF ALL CULTIVARS COMBINED TO GIVE THE "AVERAGE COMPOSITION OF NATURAL APPLE JUICE" 261

APPENDIX 28 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS FOR BRAEBOURN APPLE JUICES 263

APPENDIX 29 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS FOR GRANNY SMITH APPLE JUICES ... 269

APPENDIX 30 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS FOR GALA APPLE JUICES 274

APPENDIX 31 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS FOR ROYAL GALA APPLE JUICES .. 277

APPENDIX 32 INDIVIDUAL ORGANIC ACIDS AND RELATED COMPONENTS FOR RED DELICIOUS, COX'S ORANGE, GOLDEN DELICIOUS, FUJI, HILLWELL, GS330, GS2850 AND FIESTA APPLE JUICES 280
APPENDIX 33 CHANGES IN THE INDIVIDUAL ORGANIC ACID CONCENTRATIONS IN THE JUICE OF BRAEBURN APPLES STORED AT DIFFERENT CONDITIONS IN 1992 .. 286

APPENDIX 34 CHANGES IN THE INDIVIDUAL ORGANIC ACID CONCENTRATIONS IN THE JUICE OF GRANNY SMITH APPLES STORED AT DIFFERENT CONDITIONS IN 1992 292

APPENDIX 35 CHANGES IN THE INDIVIDUAL ORGANIC ACID CONCENTRATIONS IN THE JUICE OF ROYAL GALA AND GALA APPLES STORED AT DIFFERENT CONDITIONS IN 1992 ... 298