Campylobacter species in dogs and cats
and significance to public health
in New Zealand

A thesis in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Veterinary Science
at Massey University, Palmerston North,
New Zealand,

by

Krunoslav Bojanić

2016

Massey University
"EpiLab
Institute of Veterinary, Animal & Biomedical Science
Palmerston North, New Zealand
Abstract

Campylobacter spp. are a major cause of bacterial gastroenteritis in people in the developed world, including New Zealand. Many sources and transmission routes exist, as these bacteria are common in animals and the environment. *C. jejuni* is most frequently associated with poultry whereas *C. upsaliensis* and *C. helveticus* with dogs and cats, respectively. Published data on *Campylobacter* in dogs and cats in New Zealand and on the pathogenic potential of *C. upsaliensis* and *C. helveticus* are very limited. This thesis investigated the prevalence of *Campylobacter* spp. in household dogs and cats in Manawatu region, New Zealand, and in raw meat pet food commercially available in Palmerston North, New Zealand. Five *Campylobacter* spp. were isolated and the prevalence rates were significantly influenced by the culture methods used. *C. upsaliensis* and *C. helveticus* were most frequently detected from dogs and cats, respectively and *C. jejuni* in pet food samples. An expanded panel of culture methods was used to screen working farm dogs and their home-kill raw meat diet in Manawatu. This study reported three *Campylobacter* spp. and *Helicobacter winghamensis* as being isolated from dogs for the first time. The culture methods were again shown to bias the prevalence estimates. The isolates of *C. upsaliensis* and *C. helveticus* from the household pets study and *C. hyointestinalis* from locally farmed deer were used in a study to investigate the analytical sensitivity in spiked human clinical faecal samples using the ProSpecT™ *Campylobacter* Microplate Assay test that was developed for detection of *C. jejuni/coli*. The results showed the ability of the test to detect all three species and showed the influence of bacterial dose, faecal consistency and of the individual faecal samples on the test results. Further studies investigated the pathogenic potential of *C. upsaliensis* and *C. helveticus* in comparison to *C. jejuni* using an insect model of disease, *Galleria mellonella*, and whole-genome analyses, respectively. The results of the survival analysis in the *G. mellonella* study indicated that *C. upsaliensis* and *C. helveticus* have pathogenic potential, but to a lesser extent than *C. jejuni*. Additionally, several variables of experimental design were shown to significantly influence estimates of hazard rates in survival analysis. Whole genome analyses also showed indications of the pathogenic potential of *C. upsaliensis* and *C. helveticus* relative to *C. jejuni*, and how it varies between and within species in association with the core and accessory genomes, functional gene content profiles, and documented and predicted pathogenic proteins. This thesis has furthered our understanding of the epidemiology, detection, and pathogenicity of *Campylobacter* spp. in dogs, cats and humans, and confirmed raw meat animal food as a potential source of *Campylobacter* spp. for both people and animals.
Acknowledgements

Foremost I would like to thank my supervisors Dr Els Acke, Dr Anne Midwinter and Dr Patrick Biggs for their great support and guidance throughout the PhD and without whom this thesis would not had been written. I am very grateful to my collaborators Dr Wendi Roe, Mrs Lynn Rogers and, especially Dr Jonathan Marshall, for their help and teaching and to the “Epilab and AgResearch staff. A special thank you to Prof Boyd Jones for support in many ways to keep me and the projects going. I am indebted to the funders of the research projects, and to the Massey University for financial support with the Doctoral Scholarship, the Joan Berry Fellowship, and the Travel grants awarded.

I would like to specially thank my parents, mum Karmen and dad Boris, and all my family for all the love, and encouragement they have always given me. Diana and Steve, Anne and Hamish, Raewyn and John, and last but not least Ljubica and Jakša, have all stepped in as my “kiwi” and “PhD” mums and dads in this path too. Throughout this PhD I was surrounded by my many old and also new friends I made along the way that supported my endeavours and enriched my life with kindness, laughter and adventures. Huge thanks and hugs to Taž, RaštRkAnCi, Pat, Zoe, Anja, Kerrie, Lorelle, Paul, Kate and Fred, Lintonian and Cliftonian flatties, and office(s) roomies. Special thanks to my best friend Mirna Barbić to whom I promise a third road-trip of Aotearoa.

This work is dedicated to dogs and cats.
Publications

- **CHRO conference 2015** (Rotorua, New Zealand) Research Abstract ‘Pathogenicity of *Campylobacter jejuni*, *C. upsaliensis* and *C. helveticus* in the invertebrate disease model *Galleria mellonella*’ K Bojanić, AC Midwinter, PJ Biggs, JC Marshall, E Acke

- **ECVIM 2015** (Lisbon, Portugal) Poster abstract ‘Pathogenicity investigation of *Campylobacter jejuni*, *C. upsaliensis* and *C. helveticus* isolated from dogs and cats using *Galleria mellonella* larvae’ K Bojanić, AC Midwinter, PJ Biggs, J Marshall, E Acke
• **ECVIM 2014** (Mainz, Germany) Poster abstract ‘Whole-genome analyses of *Campylobacter upsaliensis* and *C. helveticus* isolated from dogs and cats and \textit{in silico} investigation of pathogenic potential’ K Bojanić, AC Midwinter, PJ Biggs, NP French, E Acke

• **NZVA conference 2014** (Hamilton, NZ) Invited Research lecture ‘Canine diarrhoea – *Campylobacter* conundrum’ K Bojanic, AC Midwinter, PJ Biggs, E Acke

• **CHRO conference 2013** (Aberdeen, UK) Research abstract ‘Comparison of six culture protocols for isolation of *Campylobacter* spp. from faecal and meat samples’ K Bojanic, AC Midwinter, L Rogers, PJ Biggs, E Acke

• **NZVA conference 2013** (Palmerston North, New Zealand) Research abstract ‘*Salmonella*, *E. coli* and *Campylobacter* spp. in Working Farm Dogs in New Zealand and their Home-Kill Diets’ K Bojanic, AC Midwinter, PJ Biggs, J Benschop, N Cave, E Acke

• **WSAVA conference 2013** (Auckland, New Zealand) **Winner of WSAVA Global One Health Congress Recognition Prize** Research Abstract ‘*Campylobacter* spp. in dogs and cats in New Zealand’ K Bojanic, AC Midwinter, E Kwan, PJ Biggs, E Acke

• **International Sheep and Beef Veterinary Congress 2013** (Rotorua, New Zealand) Research presentation ‘*Salmonella*, *E. coli* and *Campylobacter* spp. in Working Farm Dogs in New Zealand and their Home-Kill Diets’ K Bojanic, AC Midwinter, PJ Biggs, J Benschop, N Cave, E Acke
• **Infectious Disease Research Centre Science Symposium 2012**
 (Palmerston North, New Zealand) Research Poster ‘ProSpecT *Campylobacter*
 Microplate Assay: first results but second thoughts?’ K Bojanic, AC Midwinter,
 J Marshall, L Rogers, PJ Biggs, E Acke

• **ECVIM 2012** (Maastricht, The Netherlands) Research Abstract ‘ProSpecT
 Elisa in the diagnosis of *Campylobacter* spp. infections’ K Bojanic, AC
 Midwinter, L Rogers, PJ Biggs, E Acke
Table of contents

1. Introduction ... 18
 1.1. General background .. 18
 1.2. Thesis structure and format ... 21

2. Literature review ... 24
 2.1. Campylobacter ... 24
 2.1.1. Historical overview .. 24
 2.1.2. Taxonomy and microbiology ... 26
 2.1.3. Sources of Campylobacter species .. 34
 2.1.4. Detection and identification methods ... 36
 2.1.5. Pathobiology ... 53
 2.1.6. Typing of Campylobacter species .. 61
 2.2. Epidemiology and public health ... 68
 2.2.1. Epidemiology in humans ... 68
 2.2.2. Epidemiology in dogs and cats .. 77
 2.3. Research aims ... 90

3. Isolation of Campylobacter spp. from client-owned dogs and cats, and retail raw meat pet food in the Manawatu, New Zealand ... 94
 3.1. Impacts ... 95
 3.2. Summary .. 95
 3.3. Introduction ... 96
 3.4. Materials and methods ... 98
 3.4.1. Study design ... 98
 3.4.2. Bacterial culture .. 98
 3.4.3. Isolate identification and genotyping .. 99
 3.4.4. Statistical analysis ... 100
 3.5. Results ... 101
 3.5.1. Dogs and cats ... 101
 3.5.2. Raw pet food products ... 104
 3.5.3. Culture methods .. 105
3.5.4. MLST of C. jejuni isolates

3.6. Discussion

4. Isolation of emerging *Campylobacter* species in working farm dogs and their frozen home-kill raw meat diets

4.1. Highlights

4.2. Abstract

4.3. Introduction

4.4. Materials and methods

4.4.1. Study design

4.4.2. *Campylobacter* isolation

4.4.3. *Campylobacter* identification and typing

4.4.4. Statistical analysis

4.5. Results

4.6. Discussion

5. Variation in the limit-of-detection of the ProSpecT *Campylobacter* Microplate enzyme immunoassay in stools spiked with emerging *Campylobacter* species

5.1. Highlights

5.2. Abstract

5.3. Introduction

5.4. Materials and Methods

5.4.1. Isolates

5.4.2. Patient samples

5.4.3. EIA testing

5.4.4. Quantification of bacterial loads

5.4.5. Statistical analysis

5.5. Results

5.6. Discussion

5.7. Conclusions

6. Comparison of the pathogenic potential of emerging *Campylobacter* spp. using larvae of *Galleria mellonella* as an infection model

6.1. Abstract
6.2. Introduction ... 154
6.3. Results ... 155
6.4. Discussion ... 166
6.5. Concluding remarks .. 176
6.6. Materials and methods ... 177
 6.6.1. Strains and cultures... 177
 6.6.2. *Galleria mellonella* assays ... 180
 6.6.3. *Campylobacter* inocula .. 181
 6.6.4. Histopathology ... 182
 6.6.5. Statistical analysis ... 183
7. Whole Genome Comparison of *Campylobacter upsaliensis*, *C. helveticus* and *C. jejuni* ... 186
 7.1. Abstract .. 187
 7.2. Introduction ... 188
 7.3. Materials and methods ... 190
 7.3.1. Bacterial genomes sources .. 190
 7.3.2. Genomic DNA preparation ... 190
 7.3.3. Genome assembly, curation and annotation ... 191
 7.3.4. Comparative genomics .. 192
 7.3.5. Statistical analysis ... 193
 7.4. Results and Discussion .. 193
 7.5. Conclusions and limitations .. 228
8. General discussion and future research .. 232
9. References ... 251
10. Appendix .. 296
List of abbreviations

General

CC Clonal Complex
COG Cluster of Orthologous Groups
CoxPH Cox proportional hazard
Ctrl Control larvae
DALY Disability-adjusted life year
DNA Deoxyribonucleic acid
EIA antigen test / ProSpecT® Campylobacter Microplate Assay
Fig. Figure
HL High bacterial inoculum load
ID Identity number
KM Kaplan-Meier
LL Low bacterial inoculum load
LOD Limit of detection
ML Medium bacterial inoculum load
MLST Multilocus sequence typing
NAAT Nucleic acid-based test
PBS Phosphate buffered saline
PBS-ctrl Phosphate buffered saline-inoculated larvae control
PCR Polymerase chain reaction
qPCR Quantitative polymerase chain reaction
rMLST Ribosomal multilocus sequence typing
RNA Ribonucleic acid
rRNA Ribosomal ribonucleic acid
SNP Single nucleotide polymorphism
spp. Species
SSF Semi-solid faeces
ST Sequence type
VBN C Viable but non culturable
WF Watery faeces
COG-specific functional groups

A	RNA processing and modification
B	Chromatin structure and dynamics
C	Energy production and conversion
D	Cell cycle control, cell division, chromosome partitioning
E	Amino acid transport and metabolism
F	Nucleotide transport and metabolism
G	Carbohydrate transport and metabolism
H	Coenzyme transport and metabolism
I	Lipid transport and metabolism
J	Translation, ribosomal structure and biogenesis
K	Transcription
L	Replication, recombination and repair
M	Cell wall/membrane/envelope biogenesis
N	Cell motility
O	Posttranslational modification, protein turnover, chaperones
P	Inorganic ion transport and metabolism
Q	Secondary metabolites biosynthesis, transport and catabolism
R	General function prediction only
S	Function unknown
T	Signal transduction mechanisms
U	Intracellular trafficking, secretion, and vesicular transport
V	Defense mechanisms
W	Extracellular structures
X	Mobilome: prophages, transposons
Y	Nuclear structure
Z	Cytoskeleton
List of Tables

Table 2.1. Identified sources of *Campylobacter* spp.\(^a\) and association with reported diseases in animals and humans. .. 27

Table 2.2. Phenotypic characteristics\(^a\) of selected\(^b\) *Campylobacter* species. 33

Table 2.3. Composition of some commonly\(^a\) used culture broths for isolation of *Campylobacter* species. .. 41

Table 2.4. Composition of some commonly\(^a\) used culture media for isolation of *Campylobacter* species. .. 43

Table 2.5. Diagnostic performance characteristics\(^a\) of some commonly used faecal antigen tests for *Campylobacter* spp. in humans. .. 47

Table 2.6. Summary of results obtained with each of 25 *Campylobacter* strains representing 15 taxa examined with assays established in individual laboratories for various *Campylobacter* spp. The tests used (and their taxonomic range and original description, where relevant) in each laboratory is given. Sensitivity and specificity values for each test were calculated with respect to each assays taxonomic range. .. 50

Table 2.7. Reported prevalence rates\(^a\) of *Campylobacter* spp. in dogs and cats. 79

Table 3.1. Prevalence of isolated and PCR confirmed *Campylobacter* spp. from client-owned pets and retail raw pet food diets in the Manawatu, New Zealand. ... 103

Table 4.1. Number of positive working farm dogs\(^1\) from Manawatu, New Zealand (N = 50) using seven culture methods and isolates identified by PCR. 125

Table 5.1. Limit-of-detection of ProspecT\(^\text{TM}\) *Campylobacter* Microplate Assay in human stools spiked with three *Campylobacter* species. .. 140

Table 6.1. Distribution of histopathology scores\(^*\) in larvae infected with *Campylobacter* spp. and the uninfected control larvae groups. 164

Table 6.2. Details of *Campylobacter* species isolates used in the study. 179

Table 7.1. Number of unique gene clusters (and total genes) in Clusters of Orthologous Groups by genome compartments of *Campylobacter* species.... 204

Table 7.2. Average number of genes\(^1\) in three *Campylobacter* spp.\(^2\) (42 *C. jejuni*, 33 *C. upsaliensis* and nine *C. helveticus*) by COG functional groups and genome compartments.. 208

Table 7.3. Presence of toxin-antitoxin modules in *Campylobacter* spp. genomes.215

Table 7.4. Average number of predicted pathogenic proteins\(^a\) in three *Campylobacter* spp.\(^2\) (42 *C. jejuni*, 33 *C. upsaliensis* and nine *C. helveticus*) by COG functional groups and genome compartments .. 221

Supplemental Table 3.1. PCR assays used on isolates from dogs, cats and retail raw meat pet food products. ... 297

Supplemental Table 7.1. List of strains and related metadata of *Campylobacter* spp. genomes used in the study. ... 299

Supplemental Table 7.2. Number of strains (and number of genes) in *Campylobacter* spp. for genes documented to be involved or associated with pathogenicity of *C. jejuni*. ... 305

Supplemental Table 7.3. Number of predicted pathogenic proteins (and % proportion from total predictions) in genome compartments of *Campylobacter* species. .. 324
List of Figures

Fig. 2.1. Scanning electron micrograph of *Campylobacter jejuni*................................. 26
Fig. 2.2. *Campylobacter* colonies on mCCDA medium.. 31
Fig. 2.3. Pathogenic mechanisms of *Campylobacter* infection.. 55
Fig. 2.4. Neighbour-joining phylogenetic tree of the genus *Campylobacter* based on partial *rpoB* gene sequences. *E. coli* was used as an outgroup. Bootstrap values of 500 simulations are indicated at major branches. Bar, 2% divergence........... 66
Fig. 2.5. Framework showing sources of information and modelling approaches for the transmission of zoonotic diseases, including campylobacteriosis. Note the terms reservoir, pathway, exposure and risk factor are used here for illustrative purposes, to show how various levels of data disaggregation and refinement can be incorporated into different models for informing decision making.................... 73
Fig. 2.6. The incidence and prevalence of campylobacteriosis caused by *C. jejuni*/*C. coli* worldwide. ... 75
Fig. 3.1. Occurrence of *C. jejuni* MLST types observed in pets and raw meat pet food diets from Manawatu, New Zealand, across five sources from the "EpiLab database (N = 1,176). The horizontal axis shows sequence types (ST) isolated in this study from food only products (black bars), from pets only (light grey) and from both food and pets (dark grey) and their occurrence within the five sources (Other primarily denotes wild birds and to a lesser extent other wild animals and companion animals) on the vertical axis... 107
Fig. 5.1. Model predicted probabilities of obtaining a positive result using ProSpecTTM *Campylobacter* Microplate Assay in human clinical stools spiked with *Campylobacter* species. The line represents point estimates of predicted probabilities, the dark shaded areas 95% CI based on variation of the fixed effects (species, faecal consistency and bacterial concentrations) and the light shaded areas 95% CI with the addition of the random effect (faecal sample ID). Points at 0 and 100% represent negative and positive results of the raw data respectively. ... 144
Fig. 6.1. Kaplan-Meier survival curves of larvae (n = 4,273) inoculated with three 100-fold dilutions of *Campylobacter* species... 157
Fig. 6.2. Kaplan-Meier survival curves of larvae inoculated with *Campylobacter* spp. in different environmental conditions according to *in vitro* growth requirements. .. 158
Fig. 6.3. Kaplan-Meier survival curves of larvae inoculated with temperature-inactivated whole-cells and cellular components, and secreted products of *Campylobacter* species. .. 163
Fig. 7.1. Genome features of 42 *C. jejuni*, 33 *C. upsaliensis* and nine *C. helveticus*. ... 195
Fig. 7.2. Venn diagram of number of Clusters of Orthologous Groups (COG) shared between 42 *C. jejuni*, 33 *C. upsaliensis* and nine *C. helveticus* genomes...... 198
Fig. 7.3. Number of gene copies in Clusters of Orthologous Groups (COG) functional groups between 42 *C. jejuni*, 33 *C. upsaliensis* and 9 *C. helveticus* genomes. 201
Fig. 7.4. Heat map of the number of gene copies in Clusters of Orthologous Groups (COG) functional groups between the strains of three *Campylobacter* species. Number of gene copies has been square root transformed....................... 202
Fig. 7.5. Pan-genome and core genome rarefaction curves of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus genomes...205

Fig. 7.6. Distribution of the number of genes per strain in the pan-genome of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups..209

Fig. 7.7. Distribution of the number of core genes per strain in 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups..210

Fig. 7.8. Distribution of the number of accessory genes per strain in 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups..211

Fig. 7.9. Distribution of the number of MP3 predicted pathogenic proteins per strain in the pan-genome of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups.............222

Fig. 7.10. Distribution of the number of MP3 predicted pathogenic proteins per strain in the core genome of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups.............223

Fig. 7.11. Distribution of the number of MP3 predicted pathogenic proteins per strain in the accessory genome of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups. ...224

Fig. 7.12. Histogram of gene cluster distribution size by OrthoMCL core genome analysis of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus genomes....225

Fig. 7.13. NeighborNet visualized in SplitsTree for the 52 rMLST genes in 84 genomes of Campylobacter species. Alignment of 20,779 amino acids in length with 6,525 (31.4%) variable sites excluding the rpmD gene that is lacking in the Campylobacterales order; Cj, Cu, and Ch denote C. jejuni, C. upsaliensis and C. helveticus respectively. ..227

Supplemental Fig. 4.1. Occurrence of Campylobacter jejuni MLST types isolated in working farm dogs from Manawatu, New Zealand, across all sources from the mEpiLab database (N = 950). ..298

Supplemental Fig. 7.1. Cumulative contig length plots for 42 C. jejuni genome assemblies..325

Supplemental Fig. 7.2. Cumulative contig length plots for 33 C. upsaliensis genome assemblies..326

Supplemental Fig. 7.3. Cumulative contig length plots for nine C. helveticus genome assemblies..327

Supplemental Fig. 7.4. Distribution of the number of unique Clusters of Orthologous Groups (COG) by functional groups per strain in 42 C. jejuni (257 unique COGs), 33 C. upsaliensis (169 unique COGs) and nine C. helveticus (49 unique COGs) isolates. Campylobacter spp. respresents the number per strain of 1,111 COGs shared between the three species. ...328

Supplemental Fig. 7.5. Distribution of the number of singleton genes per strain in 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups..329

Supplemental Fig. 7.6. Agreement between MP3 and PathogenFinder predictions of pathogenic proteins of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus genomes..330
Supplemental Fig. 7.7. Distribution of the number of MP3 predicted pathogenic proteins per strain in singletons of 42 C. jejuni, 33 C. upsaliensis and nine C. helveticus isolates by Clusters of Orthologous Groups (COG) functional groups. ... 331

Supplemental Fig. 7.8. NeighborNet visualised in SplitsTree for the amino acid sequences of 182 core genes in 84 genomes of Campylobacter species. Only genes of same length were used and had an alignment of 45,949 amino acids in length with 9,840 (21.42%) variable sites. Cj, Cu, and Ch denote C. jejuni, C. upsaliensis and C. helveticus, respectively. ... 332

Supplemental Fig. 7.9. NeighborNet visualised in SplitsTree for the amino acid sequences of 649 core genes in 84 genomes of Campylobacter species. The genes included are those that have a length range of 20% in the cluster and had an alignment of 197,053 amino acids in length with 59,486 (30.19%) variable sites. Cj, Cu, and Ch denote C. jejuni, C. upsaliensis and C. helveticus, respectively. ... 333