Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

Although a decreasing trend of human notifications was observed from 2001 to 2014 (Chapter 1), the incidence of human leptospirosis in New Zealand continues to be higher than in other high-income countries and affecting predominately people occupationally exposed to livestock (i.e. abattoir workers and farmers). Additionally, evidence suggests that leptospirosis may have a higher detrimental effect on production in deer compared with beef cattle or sheep. It was also observed that vaccination against \textit{Leptospira} of not previously infected animals reduce the risk of urinary shedding of leptospires after challenge, and that there is limited evidence supporting or disproving that maternally derived antibodies interfere with the effect of vaccination when animals are vaccinated at a young age.

When sero-positivity was defined as a serum microscopic agglutination test (MAT) titre of \(\geq 48\), 6.6% of farmers (Chapter 2) and 5.1% of veterinarians (Chapter 3) were sero-positive to at least one of five \textit{Leptospira} serovars (Hardjo-bovis, Pomona, Copenhageni, Ballum, Tarassovi). Veterinarians had a higher risk of being sero-positive when they slaughtered cattle or pigs at home or worked in a mixed animal practice. Assisting calving of cattle or deer, farming deer alone or in combination with cattle and/or sheep, flat terrain on farm, and abundance of wild deer on farm, increased \textit{Leptospira} sero-positivity of farmers. Apart from vaccinating farmed livestock, increased awareness of such risk factors and the use of protective equipment may reduce the human leptospirosis incidence in these occupational groups.

Similar to earlier observations in abattoir workers, \textit{Leptospira} sero-prevalence of farmers and veterinarians was associated with the recall of influenza-like illness of sampled individuals. Using the estimated incidence of influenza-like illness attributable to \textit{Leptospira} infection (population attributable risk) of veterinarians (0.05%), farmers (1.3%) and abattoir workers (2.7%), we quantified the burden of human leptospirosis in terms of disability-adjusted life years (DALYs) and economic
cost of infection; the latter including the cost of vaccination, which is primarily used in dairy cattle (Chapter 4). Annual DALYs were estimated to be 0.43 per 100,000 people in New Zealand, and 16.76 per 100,000 people when only considering the occupationally-exposed population (abattoir workers, farmers, veterinarians). This ranks leptospirosis in New Zealand’s high-risk population similar to worldwide estimates of DALYs for rabies and dengue. The total annual cost of leptospirosis due to human disease (i.e. treatment and absence from work); production loss in deer, beef cattle, and sheep; and the cost for vaccinating them was estimated to be NZ$25.36 million. One third of this total was attributed to vaccination of dairy cattle. The annual cost of human treatment and workplace absence due to severe and mild leptospirosis was NZ$4.49 million. Total lost production cost was NZ$11.31 million, half of which was attributable to reproductive and growth reduction in deer. No estimates are currently available from any other country for the public health burden and the overall economic loss including farmed livestock for this disease.

Since vaccination of livestock is currently regarded as the most effective means of preventing human exposure, the literature on the efficacy of Leptospira vaccines for preventing urinary shedding was systematically reviewed (Chapter 5). The meta-analysis of vaccination trial results, using articles with sufficiently detailed data, resulted in a pooled vaccine efficacy estimate of 82% when shedding was assessed by culture.

The findings of this thesis contribute towards a better understanding of the public health burden, economic cost, infection sources for humans, and the efficacy of vaccination for reducing the risk of Leptospira urinary shedding in domestic livestock.
Acknowledgement

This PhD thesis would not have been possible without the collaboration, dedication and friendship of many people that contributed in some way towards this final outcome. I want to start thanking my supervisors in this project: Cord Heuer, Peter Wilson, Jackie Benschop and Julie Collins-Emerson since they were a fundamental part in my learning experience throughout these years as a PhD student. I sincerely appreciate the support, guidance and opportunities they gave me in this process to develop my own research skills in a very motivating working environment. I am grateful to have had the opportunity to form part of the “Lepto team” at Massey University and I really hope that this is just the beginning of many more projects and collaborations in the future. I also want to express my gratitude to Cord with whom I had the privilege to work first towards my Master degree and then on this PhD project. During all these years he kept maintaining his door open and smiling regardless of how many interruptions, or how inopportune my “visits” were. Thanks for all the advice given, and sharing your knowledge and friendship with me. I am looking forward to the next glass of good wine!

My appreciation to all participant veterinarians and farmers, who generously agreed to take part in this research, gave a blood sample, and took the necessary time to complete our questionnaires. It is not superfluous to say that without their selflessly collaboration, none of the finding of this thesis would have been possible.

A big thank to Neville Haack (and the lab pixies) for all the expertise and support in the laboratory while testing samples. I will keep in my memory that occasion when an earth quake hit the lab while we were reading test results. What a commitment we showed when the building started shaking but we remained sitting there undaunted doing our job!

I am very grateful to Heather Duckett and Kate Egerton who drove all over
New Zealand collecting blood samples of farmers. Heather did a tremendous job in coordinating farm visits, transporting samples, and ensuring that all questionnaires were completed properly. The outcome of the research on leptospirosis in farmers was enhanced by the neat work done by Heather and Kate.

I sincerely appreciate the support given by Massey University and Education New Zealand as they partially funded this research through Doctoral scholarships.

I also want to mention and thank all teachers that I had at the EpiCentre: Naomi Cogger, Jackie Benschop, Eric Neumann, Daan Vink, Mark Stevenson, Tim Carpenter and Cord Heuer who taught me not only about epidemiology but also how to teach myself in order to be an independent researcher. Learning from them was a real inspiration.

My time living in New Zealand has been one of the greatest in my life and I want to thank all the people that made me feel at home. In these years I have crossed paths with so many beautiful friends, from so many different places and backgrounds, who have enriched my own life so much and made me realise how lucky I am for living these experiences. I would name them all in these lines if I were confident of not leaving anyone behind. So many good friends have gone overseas over the years, leaving always a bitter sweet taste because of their departure but with the comfort of knowing that pieces of friendship are now all over the world. Life, of course, would not be the same without Football (and Frisbee lately) and charcoal BBQs (ok, and gas as well). Thanks to all friends that participated in these uncountable magnificent events for bringing so much happiness.

Thanks to my parents Dorcas and Eduardo, for all the love and support they have given me, and for encouraging me to pursue my dream of coming to New Zealand. Also, I want to extend my gratitude to all my family members for their support at the distance.

Finally, huge thanks to my wife Daniela for sharing her life and kindness with me, and being the best company I could have wished for. Also, thanks to my daughters Magdalena and Isabel for giving me the happiest moments of my life.
Declaration

This thesis was formatted as five independent research chapters suitable for journal publication. Therefore, concepts and/or methodology described in a chapter may be repeated in another chapter. My input as main author of this research was to plan and coordinate sampling of veterinarians and farmers, develop questionnaires to record relevant information, process samples in the laboratory and test them for antibodies against \textit{Leptospira}, conduct systematic literature search, select studies for meta-analysis, analyse data, and draft manuscripts reporting findings. People that contributed substantially to the research were made co-authors as listed at the beginning of each chapter.
List of abbreviations

MUHEC: Massey University Human Ethics Committee
MAT: Microscopic Agglutination Test
OR: Odds Ratio
RR: Relative Risk
PR: Prevalence Ratio
CI: Confidence Interval
PI: Probability Interval
PAR: Population Attributable Risk
PAF: Population Attributable Fraction
LRT: Likelihood Ratio Test
REML: Restricted Maximum Likelihood
MCMC: Markov Chain Monte Carlo
DALYs: Disability-Adjusted Life Years
YLL: Years of Life Lost
YLD: Years Lost due to Disability
MDA: Maternally Derived Antibodies
IgM: Immune Globulin of class M
IgG: Immune Globulin of class G
PBMC: Proliferation of peripheral Blood Mononuclear Cells
PCR: Polymerase Chain Reaction
FA: Fluorescent Antibody
DFM: Dark Field Microscopy
ACC: Accident Compensation Corporation
List of publications

List of conference presentations

Contents

Abstract

Acknowledgement

Declaration

List of abbreviations

List of publications

List of conference presentations

List of figures

List of tables

Introduction

1 Literature review

1.1 Summary ... 2
1.2 Introduction 4
1.3 Materials and Methods 5
1.4 Human leptospirosis 5
1.5 *Leptospira* in domestic animals and wildlife 8
1.6 Production effects 14
 1.6.1 Cattle ... 14
 1.6.2 Sheep .. 15
 1.6.3 Deer ... 16
1.7 Registered vaccines 17
1.8 Vaccine coverage 17
1.9 Immunity against *Leptospira* 24
1.9.1 Humoral immune response ... 24
1.9.2 Cell-mediated immunity .. 26
1.10 Maternally derived antibodies (MDA) and vaccination 27
1.11 Vaccine efficacy ... 29
 1.11.1 Cattle ... 30
 1.11.2 Deer and sheep ... 31
1.12 Multivalent and monovalent vaccines 33
1.13 Long term vaccine efficacy .. 34
1.14 Conclusion .. 36
1.15 Acknowledgement .. 38

References .. 39

2 *Leptospira* sero-positivity in farmers 51
 2.1 Summary .. 52
 2.2 Introduction .. 53
 2.3 Material and Methods ... 55
 2.3.1 Sampling frame .. 55
 2.3.2 Sample collection ... 55
 2.3.3 Serological testing .. 55
 2.3.4 Questionnaire ... 56
 2.3.5 Data description .. 56
 2.3.6 Sero-prevalence in farmers and animals 56
 2.3.7 Multivariable model building 57
 2.3.8 Multivariable model specification and convergence diagnostics 57
 2.3.9 Leptospirosis in farmers pre-sampling 57
 2.3.10 Influenza-like illness ... 58
 2.3.11 Statistical software .. 58
 2.3.12 Human ethics application 58
 2.4 Results .. 59
 2.4.1 Serology in farmers .. 59
 2.4.2 Animal contact, vaccination and previous animal serological status .. 61
 2.4.3 Association between previous animal sero-prevalence and farmer sero-status .. 61
 2.4.4 Risk factors for *Leptospira* sero-positivity in farmers 63
CONTENTS

2.4.5 Previous leptospirosis 64
2.4.6 Association between serology and influenza-like illness 65
2.5 Discussion ... 67
2.6 Conclusion .. 72
2.7 Acknowledgement ... 73

References .. 75

3 Leptospira sero-positivity in veterinarians 81
3.1 Summary ... 82
3.2 Introduction ... 83
3.3 Materials and Methods ... 85
 3.3.1 Study Design ... 85
 3.3.2 Recording of risk factors 85
 3.3.3 Statistical analysis ... 86
 3.3.4 Human ethics application 87
3.4 Results .. 88
 3.4.1 Titre distribution ... 88
 3.4.2 Sero-prevalence ... 88
 3.4.3 Age and gender .. 89
 3.4.4 Occupational exposure to animals 89
 3.4.5 History of previous leptospirosis episodes 90
 3.4.6 Influenza-like illness in the last 18 months 91
 3.4.7 Unadjusted associations 91
 3.4.8 Multivariable analysis 92
3.5 Discussion ... 94
3.6 Conclusion .. 98
3.7 Acknowledgement ... 99

References .. 101

4 Burden of leptospirosis in New Zealand 105
4.1 Summary ... 106
4.2 Introduction ... 107
4.3 Materials and Methods ... 109
 4.3.1 Simulation model ... 109
 4.3.2 Burden of leptospirosis 109
4.3.3 Cost of leptospirosis 112
4.4 Results .. 118
 4.4.1 Annual number of human leptospirosis cases 118
 4.4.2 DALYs .. 118
 4.4.3 Human and animal cost of leptospirosis 119
4.5 Discussion .. 123
4.6 Conclusion .. 128
4.7 Acknowledgement 129

References ... 131

5 Meta-analysis of vaccine efficacy 137
 5.1 Summary ... 138
 5.2 Introduction 140
 5.3 Materials and Methods 143
 5.3.1 Research question 143
 5.3.2 Literature search strategy 143
 5.3.3 Screening of records 143
 5.3.4 Eligibility criteria 144
 5.3.5 Data extraction 144
 5.3.6 Bias assessment for individual studies 144
 5.3.7 Methods for measuring shedding of leptospires in urine . 145
 5.3.8 Meta-analysis 145
 5.3.9 Software 146
 5.4 Results ... 147
 5.4.1 Selection of articles 147
 5.4.2 Data extraction and bias assessment 148
 5.4.3 Meta-analysis exclusions 148
 5.4.4 Articles included in meta-analyses 150
 5.4.5 Meta-analysis of vaccine efficacy assessed by culture . 150
 5.4.6 Meta-analysis of vaccine efficacy assessed by PCR 152
 5.4.7 Meta-analysis of vaccine efficacy assessed by FA 153
 5.4.8 Urinary shedding assessed by DFM 154
 5.5 Discussion .. 155
 5.6 Conclusion .. 160
 5.7 Acknowledgement 161
References

6 General discussion

6.1 Introduction .. 172
6.2 Under-ascertainment of human leptospirosis 172
6.3 Occupational exposure 174
6.4 Leptospira sero-positivity and influenza-like illness 176
6.5 Burden of leptospirosis in New Zealand 177
6.6 Control of leptospirosis 178
6.7 Methodology critiques 181
 6.7.1 Microscopic agglutination test 181
 6.7.2 Antibody titre duration 181
 6.7.3 Recalling influenza-like illness 182
6.8 Future research .. 183
 6.8.1 Leptospirosis in dairy cattle 183
 6.8.2 Leptospirosis in wildlife 183
 6.8.3 Sero-prevalence to serovars other than Hardjo-bovis and Pomona in livestock ... 184
 6.8.4 Spatial analysis of animal’s serology data 184
 6.8.5 Post-acute leptospirosis sequelae 185
 6.8.6 Serological surveys in other at risk occupations 185
 6.8.7 Analysis of human notified cases 185

References

Appendices

.1 Appendix I: Farmer questionnaire 196
.2 Appendix II: Prevalence model 208
.3 Appendix III: Prevalence model clustering 209
.4 Appendix IV: Multivariable model 210
.5 Appendix V: Veterinarian questionnaire 215
.6 Appendix VI: Burden and cost Code 222
.7 Appendix VII: Burden and cost assumptions 240
.8 Appendix VIII: Summary of trials for meta-analysis 245
List of figures

1.1 Number of notified cases 2001-2014 .. 7
1.2 Number of notified cases by serovar 2001-2014 8
1.3 Percentage of notified cases by occupation 2001-2014 9
2.1 Spatial distribution of farms .. 59
2.2 MAT titre distribution ... 60
3.1 MAT titre distribution by serovar .. 88
3.2 Percentage of time spent in contact with different animal species ... 90
4.1 Density distribution of annual cost per 100,000 people by species ... 121
5.1 Systematic selection of studies ... 147
5.2 Forest plot culture .. 151
5.3 Funnel plot culture .. 152
5.4 Forest plot PCR .. 153
5.5 Forest plot FA .. 154
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sero-prevalence in beef cattle, sheep, and deer</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Registered vaccines</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Leptospira sero-prevalence</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>Leptospira animal sero-prevalence</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>Unconditional associations</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>Multivariable model</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Leptospira sero-status and influenza-like illness</td>
<td>66</td>
</tr>
<tr>
<td>3.1</td>
<td>Sero-prevalence in veterinarians</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Leptospira sero-positivity and influenza-like illness</td>
<td>91</td>
</tr>
<tr>
<td>3.3</td>
<td>Unadjusted associations</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Multivariable model</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>Expected annual incidence</td>
<td>118</td>
</tr>
<tr>
<td>4.2</td>
<td>DALYs</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>Cost of leptospirosis</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>Systematic bias assessment</td>
<td>149</td>
</tr>
</tbody>
</table>
xxiv

LIST OF TABLES