Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Evolutionary and molecular origins of a phenotypic switch in *Pseudomonas fluorescens* SBW25

A thesis submitted in partial fulfilment of the requirements for the degree of Ph.D. in Evolutionary Genetics at Massey University, Auckland, New Zealand.

Jenna Gallie

2010
Survival in the face of unpredictable environments is a challenge faced by all organisms. One solution is the evolution of mechanisms that cause stochastic switching between phenotypic states. Despite the wide range of switching strategies found in nature, their evolutionary origins and adaptive significance remain poorly understood. Recently in the Rainey laboratory, a long-term evolution experiment performed with populations of the bacterium *Pseudomonas fluorescens* SBW25 saw the *de novo* evolution of a phenotypic switching strategy. This provided an unprecedented opportunity to gain insight into the evolution and maintenance of switching strategies.

The derived ‘switcher’ genotype was detected through colony level phenotypic dimorphism. Further microscopic examination revealed the cellular basis of phenotypic switching as the bistable (ON/OFF) expression of a capsule. Transposon mutagenesis demonstrated that the structural basis of the capsule was a colanic acid-like polymer encoded by the Pflu3656-wzb locus. Subsequently, whole genome re-sequencing enabled elucidation of the series of mutational events underlying the evolution of capsule bistability: nine mutations were identified in the switcher. Present in both forms of the switcher, the final mutation – a point mutation in a central metabolic pathway – was shown to be the sole mechanistic cause of capsule switching; it ‘set the stage’ for a series of molecular events directly responsible for bistability.

Two models were proposed to explain capsule switching at the molecular level: the genetic amplification-reduction model, and the epigenetic feedback model. Collective results of biochemical and genetic assays proved consistent with the epigenetic model, whereby a decrease in flux through the pyrimidine biosynthetic pathway activates an already-present feedback loop. Subsequent analysis of a second switcher (evolved independently of and in parallel with the first) revealed a radically different genetic route leading to phenotypically and mechanistically similar capsule switching.
In addition to providing the first empirical insight into the evolutionary bases of switching strategies, the work presented in this thesis demonstrates the power of natural selection – operating on even the simplest of organisms – to forge adaptive solutions to evolutionary challenges; in a single evolutionary step, selection took advantage of inherent intracellular stochasticity to generate an extraordinarily flexible phenotype.
Acknowledgements

Firstly, I would like to thank my supervisor, Professor Paul Rainey for encouragement, ideas and discussions throughout this research. Thanks also to my co-supervisor, Dr. Mathew Goddard from the University of Auckland. I am grateful for the opportunity to present and discuss this research at the Evolution Conference (Christchurch, NZ; 2007) and the Gordon Research Conference in Microbial Population Biology (New Hampshire, USA; 2007). Attendance at these conferences – and indeed the entire project – would not have been possible without the generous financial support of a Tertiary Education Committee Bright Future Top Achiever’s Doctoral Scholarship.

I would like to acknowledge the endless insights and observations contributed by past and present members of the Rainey lab. Particular thanks to Dr. Hubertus Beaumont for his prior work on the reverse evolution experiment, and continued interest and collaboration. For assistance with fitness assays, I thank Dr. Christian Kost. Thanks to Frederic Bertels for invaluable bioinformatic assistance and for writing the cell counting programme used throughout this thesis. For support with transposon mutagenesis of 6w^4, I thank Sylke Nestmann. Thanks to Yunhao Liu for efficient technical assistance and washing all those microcosms!

I am grateful to Professor Ahmed Abdelal, Professor Susan Powers-Lee and Dr. James Thoden for their expert insight into the effects of carB mutations, and Professor Mogens Kilstrup for sharing his extensive knowledge of nucleotide biosynthetic pathways. Thanks also to Professor James Sneyd for helpful discussions about mathematical switching models, and to Professor Marti Anderson for statistical expertise. Special thanks to Dr. David Ackerley for kindly providing the pSX over-expression system and assisting with associated cloning and expression protocols.
For providing suggestions for the improvement of this thesis, I would like to thank Professor Paul Rainey, Dr. Hubertus Beaumont, Dr. Christian Kost, Dr. Michael McDonald and, in particular, Frederic Bertels.

For the opportunity to present this research to a wide range of audiences, I thank the Tertiary Education Committee, organisers of the MacDiarmid Young Scientists of the Year Awards. Special thanks to Professor Paul Rainey, Professor Gaven Martin, Dr. Hubertus Beaumont, Frederic Bertels and Elaine Gallie for supporting my entry through to the finals of the 2009 competition.

I thank Professor Don Love and Dr. Brian Murray for the opportunity to tutor and demonstrate various undergraduate student courses.

Finally, I would like to express my gratitude to my family and friends for the endless patience and personal support, without which this thesis would have never been completed. Thanks for always being there Mum, Frederic and Rachele!
Table of Contents

ABSTRACT .. i
ACKNOWLEDGEMENTS .. iii
TABLE OF ABBREVIATIONS .. x

CHAPTER 1: INTRODUCTION ... 1
 1.1 Phenotypic flexibility is the cornerstone of life .. 1
 1.1.1 Phenotypic switching mechanisms with genetic bases: contingency loci 2
 1.1.1.1 Site-specific inversion .. 2
 1.1.1.2 Slipped-strand mispairing .. 4
 1.1.1.3 Differential DNA methylation .. 6
 1.1.2 Phenotypic switching with epigenetic bases: bistability 9
 1.1.2.1 Molecular mechanisms of bistability ... 10
 1.1.3 Adaptive significance and evolutionary origins of phenotypic switching 13
 1.2 The power of bacterial model systems in experimental evolution 14
 1.2.1 The Pseudomonas fluorescens SBW25 experimental system 15
 1.2.1.1 Pseudomonas fluorescens SBW25 ... 15
 1.2.1.2 Diversification in a static microcosm .. 15
 1.2.1.3 The wrinkly spreader phenotype ... 16
 1.2.1.4 The structural basis of the wrinkly spreader phenotype 16
 1.2.1.5 Genetic routes to the wrinkly spreader phenotype 18
 1.3 Mechanisms of evolution: insights from bacterial model systems 25
 1.3.1 Influences on natural selection ... 25
 1.3.2 The role of evolutionary history: 'replaying life’s tape' 26
 1.3.3 Replaying the P. fluorescens tape: the reverse-evolution experiment 28
 1.3.4 Emergence of the switcher phenotype ... 30
 1.4 Summary and aims of the current study ... 31

CHAPTER 2: MATERIALS AND METHODS .. 33
 2.1 Materials .. 33
 2.1.1 Bacterial strains ... 33
 2.1.2 Plasmids and transposons ... 35
 2.1.3 Antibiotics, enzymes and reagents ... 36
 2.1.4 Media and culture conditions .. 36
 2.1.5 DNA extraction materials .. 37
 2.1.6 Primers ... 37
 2.1.7 Chemically competent cell production materials 40
 2.1.8 Microscopy materials .. 40
 2.2 Methods .. 41
 2.2.1 Genomic DNA extraction ... 41
 2.2.2 Polymerase chain reaction (PCR) ... 41
 2.2.2.1 Standard PCR .. 41
 2.2.2.2 Strand overlap extension (SOE-PCR) .. 42
 2.2.2.3 Arbitrary primed-PCR (AP-PCR) ... 43
 2.2.3 Cloning and transformation techniques ... 43
CHAPTER 6: THE MOLECULAR MECHANISM OF \textit{1w}^{d} PHENOTYPIC SWITCHING

6.1 INTRODUCTION

6.2 AIMS

6.3 RESULTS

4.2 AIMS .. 75

4.3 RESULTS .. 76

4.3.1 Transposon mutagenesis of \textit{1w}^{d} ... 76

4.3.1.1 Insertions in the colanic acid biosynthetic cluster 82

4.3.1.2 Insertions in genes involved in the biosynthesis of colanic acid precursors .. 87

4.3.1.3 Insertions in potential transcriptional regulators of colanic acid genes 91

4.3.1.4 Insertions in genes that reduce colanic acid biosynthesis indirectly 94

4.3.1.5 Insertions that increase capsule biosynthesis ... 96

4.4 DISCUSSION .. 100

4.4.1 Further insights into the \textit{1w}^{d} phenotype .. 100

4.4.2 A model for biosynthesis and regulation of colanic acid 100

4.4.2.1 Precursors of colanic acid biosynthesis .. 100

4.4.2.2 Synthesis and secretion of colanic acid ... 101

4.4.2.3 Transcriptional regulation of colanic acid biosynthetic genes 101

4.4.3 Intracellular nucleotide pools affect the \textit{1w}^{d} phenotype 103

4.4.4 Insights into the molecular basis of \textit{1w}^{d} switching 104

CHAPTER 5: UNRAVELING THE EVOLUTIONARY HISTORY OF \textit{1w}^{d} 105

5.1 INTRODUCTION .. 105

5.2 AIMS .. 106

5.3 RESULTS .. 107

5.3.1 Identification of mutations in \textit{1w}^{d} ... 107

5.3.2 Determining the chronology of mutations in line one 108

5.3.3 Molecular relationships between genotype and phenotype in line one ... 109

5.3.3.1 Cycle one .. 111

5.3.3.2 Cycle two ... 112

5.3.3.3 Cycle three .. 113

5.3.3.4 Cycle four .. 114

5.3.3.5 Cycle five .. 115

5.3.4 Investigating the genetic cause(s) of phenotypic switching 117

5.3.4.1 Reconstruction of \textit{carB} alleles in various genetic backgrounds 117

5.3.5 The first eight mutations play a role in the evolution of switching 121

5.3.5.1 Differential evolution of dimorphic genotypes from SBW25 and \textit{1s}^{4} 121

5.3.5.2 The effect of preceding mutations on biological fitness of the \textit{carB} mutation .. 122

5.3.5.3 Importance of the biological environment in switcher evolution 124

5.4 DISCUSSION .. 126

5.4.1 Summary of the \textit{1w}^{d} genotype ... 126

5.4.2 Insights from the mutational series ... 126

5.4.2.1 Sub-cellular organisation of Wsp, Aws and Mws 126

5.4.2.2 Reconciling genotype and phenotype in \textit{1w}^{d} 127

5.4.3 Insights into the molecular mechanism of phenotypic switching 128

CHAPTER 6: THE MOLECULAR MECHANISM OF \textit{1w}^{d} PHENOTYPIC SWITCHING ... 129

6.1 INTRODUCTION ... 129

6.2 AIMS .. 129

6.3 RESULTS .. 131
7.3.6.1 Effect of uracil on 6wynthesis

7.3.6.2 Effect of guanine hydrochloride on 6wynthesis

7.3.6.3 Sequential over-expression of UTP biosynthetic genes in 6wynthesis

7.4 Discussion

7.4.1 Summary of the 6wynthesis

7.4.2 Summary of the 6wgenotypic history

7.4.2.1 The three line six wspF mutations

7.4.2.2 Mutations in nlpD

7.4.3 Insights into the mechanism of phenotypic switching

7.4.3.1 A molecular link between rpoD and capsule expression

7.4.3.2 Molecular effects of the rpoD mutation

8.1 Overview

8.1.1 Project background

8.1.2 Review of findings

8.2 Future Directions

8.2.1 Testing the predictions of the epigenetic model of capsule switching

8.2.2 Further research into the evolutionary origins of phenotypic switching

8.3 Final Comment

Reference List

Appendices
Table of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>Acetylated cellulosic polymer</td>
</tr>
<tr>
<td>AP-PCR</td>
<td>Arbitrary primed-polymerase chain reaction</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>c-di-GMP</td>
<td>Cyclic-dimeric-guanosine monophosphate</td>
</tr>
<tr>
<td>CP</td>
<td>Carbamoyl phosphate</td>
</tr>
<tr>
<td>CPSase</td>
<td>Carbamoyl phosphate synthetase</td>
</tr>
<tr>
<td>DGC</td>
<td>Di-guanylate cyclase</td>
</tr>
<tr>
<td>dNTP</td>
<td>dinucleotide triphosphate</td>
</tr>
<tr>
<td>DUF</td>
<td>Domain of unknown function</td>
</tr>
<tr>
<td>g</td>
<td>gram/gravity</td>
</tr>
<tr>
<td>GDP/GTP</td>
<td>Guanosine di-/tri- phosphate</td>
</tr>
<tr>
<td>GDP-Fuc</td>
<td>GDP-L-fucose</td>
</tr>
<tr>
<td>Gm</td>
<td>Gentamicin</td>
</tr>
<tr>
<td>HK</td>
<td>Histidine kinase</td>
</tr>
<tr>
<td>KB/kb</td>
<td>King's medium B/kilobase</td>
</tr>
<tr>
<td>Km</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny broth</td>
</tr>
<tr>
<td>M-W-W test</td>
<td>Mann-Whitney-Wilcoxon test</td>
</tr>
<tr>
<td>NF</td>
<td>Nitrofurantonin</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase</td>
</tr>
<tr>
<td>REE</td>
<td>Reverse evolution experiment</td>
</tr>
<tr>
<td>RR(r)</td>
<td>Response regulator (receiver)</td>
</tr>
<tr>
<td>SM</td>
<td>Smooth morph</td>
</tr>
<tr>
<td>SSI</td>
<td>Site-specific inversion</td>
</tr>
<tr>
<td>SSM</td>
<td>Slipped-strand mispairing</td>
</tr>
<tr>
<td>Tc</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>TCSTP</td>
<td>Two-component signal transduction pathway</td>
</tr>
<tr>
<td>UDP-Gal</td>
<td>UDP-D-galactose</td>
</tr>
<tr>
<td>UDP-Gluc</td>
<td>UDP-D-glucose</td>
</tr>
<tr>
<td>UDP-GlucA</td>
<td>UDP-D-glucuroinc acid</td>
</tr>
<tr>
<td>UMP/UDP/UTP</td>
<td>Uracil mono-/di-/tri- phosphate</td>
</tr>
<tr>
<td>WS</td>
<td>Wrinkly spreader</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside</td>
</tr>
</tbody>
</table>