Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Ionically Cross-Linked Alginate Hydrogels as Drug Delivery Systems for Analgesics in Broiler Chickens

Thesis presented in partial fulfilment of the requirement for the degree of

Masters of Science
In Chemistry

At Massey University, Palmerston North, Manawatu, New Zealand

Samuel James Booty

2017
Thesis Abstract

Treating birds with analgesic drugs requires continuous injections of near lethal concentrations to maintain the therapeutic dose in the blood plasma. This is due to birds having higher metabolic rates than mammals. Therefore, there is a need to develop drug delivery systems that can control and slow down the release of analgesics in birds. This study was designed to analyse the sustained release of the model analgesics, sodium salicylate and sodium aspirin, from ionically cross-linked alginate hydrogels, in \textit{in vitro} and \textit{in vivo} experiments using broiler chickens as the model bird. Analgesic loaded hydrogels separated into two layers, unlike the homogeneous blank hydrogels. This was labelled as the separation effect. Swelling studies indicated the absence of the insoluble cross-linked alginate material in the hydrogels where the separation effect occurred, with most of the hydrogels dissolving back into the medium. The highest equilibrium swelling percentage achieved in the loaded hydrogels was 68 %. In comparison, the highest equilibrium swelling percentage in the blank hydrogels was 622 %. \textit{In vitro} drug release profiles showed that the hydrogels released up to 100 % of the sodium salicylate within 3.33 hours. In contrast, the hydrogels containing sodium aspirin released only 35 % of the encapsulated drug. Hydrogels containing a drug concentration of 150 mg/mL were injected into the model birds at a dose rate of 150 mg/Kg. No chicken reacted negatively to the hydrogel injection. \textit{In vivo} results indicate sustained release of the model analgesic from the hydrogels compared to the release from the aqueous solutions of the drug. The effective concentration for an analgesic effect of sodium salicylate was maintained by the group injected with an aqueous solution of sodium salicylate 18 hours after the injection. The groups injected with the hydrogel with the maximum calcium chloride content saw the largest sustained release, with the plasma concentration of sodium salicylate remaining over the effective concentration for up to 36 hours after the injection.

Keywords: Sodium salicylate, sodium aspirin, hydrogel, analgesia, sustained release, broiler chicken.
Acknowledgements

I want to first acknowledge my three gracious supervisors, Professor David Harding, Dr Catherine Whitby, and Dr Preet Singh. Without their help, suggestions, critical analysis skills and wonderful guidance, this project and thesis would not be possible. I also want to give huge thanks for their help at the start of the project, during my health problems. Thank you for all the support and patience you gave to me during a hard part of the project. It is a beautiful kindness I will always remember. It has been an honour to work with some of the best scientists in the world and will be something I will remember with pride for the rest of my life. Words cannot thank you all enough.

I want to do a special thanks to Professor David Harding, for always being there no matter the situation and always making me strive to be the best I can be not only as a person, but also as a chemist. Thank you for always making me laugh with your jokes, even the ones I did not understand - they always brightened even the darkest days. Again, words cannot thank you enough for all the work you put into the thesis and the project, and I wish you all the luck in the world for the future.

To my loving family, Carl, Debra, Tyler, and Jordan, thank you for all the support you have given me throughout my journey. It has been very hard and highly straining but my days became better after you gave me your love and support. I love you to the ends of the earth and cannot wait to see where the future takes all of us. Special mention to my father, Carl for his Photoshop skills - you saved my terrible attempts at taking photos!!

I want to thank all the staff of the IFS Institute at Massey for making this journey possible, and giving me the chance to learn from the best. A special thanks to the beautiful office ladies for helping with all the paper work needed to complete the project as well as our long conversations about life. You all lighten up the Institute.

A huge thank you to Rafea Naffa for guiding me through the HPLC analysis of the chicken plasma samples and Shashwati Mathurkar for helping me to effectively process the samples for the analysis.
To all the staff at Massey Accommodation Services, thank you for the last year and for giving me a chance at working as a residential assistant in Palmerston North. Your support during this period has been unforgettable and I cannot wait to see where the future takes you all. A very special thanks to Sarah Sandilands, you made my year with Accommodation Services even better with your beautiful smile, unrelenting support and much needed advice.

To Yvette Jones, thank you for the support you have given me throughout the project. You have been in my life from the start of my journey here at Massey, and through our ups and downs, we always come out on top better than before. You are like a sister to me and even as I am writing this up, I cannot stop smiling and thinking of all the good times we have had. Thank you for all the support you have given me in life and this project and I cannot wait what the future outside of Massey holds for the both of us.

To Massey University, thank you for giving me the opportunity to do my chemistry course and this project. Your help even before starting at university has truly made me feel like part of the Massey family. As my journey ends at Massey and the new journey begins, I will always look back on my journey with a smile on my face and know that what I achieved was due to my time at Massey.

Finally, for anyone I missed, thank you all for your support. As you may not be here, please know that I have not forgotten about you or your support and thank you from the bottom of my heart for everything.
Table of Contents

Abstract ...ii
Acknowledgments ..iii
Table of Contents ..v
List of Tables ..ix
List of Figures ..x

Chapter 1 ..1
1. Introduction..1
 1.1. Definitions and Categorisations of a Gel ...2
 1.1.1. Definition of a Gel According to IUPAC ...2
 1.1.2. Definition of a Gel According to the Academic World2
 1.1.3. Classification of Gels ..3
 1.2. Hydrogels ..4
 1.3. Classification of Hydrogels ..4
 1.3.1. Six-step Classification of Hydrogels ...5
 1.3.2. Stimuli-Sensitive Hydrogels ..5
 1.4. Characterisation of Hydrogels ..6
 1.4.1. Swelling Capabilities ...6
 1.4.2. Toxicity and Biodegradability ..7
 1.4.3. Flexibility ..7
 1.4.4. Biocompatibility ... 8
 1.4.5. Drug Entrapment and Release ...8
 1.5. Preparation of Hydrogels ...9
 1.5.1. Chemical Cross-Linking ..9
 1.5.2. Physical Cross-Linking ...12
 1.6. Alginate and Alginate Based Hydrogels ...13
 1.6.1. Composition of Alginate ..13
 1.6.2. Production of Alginate ...14
 1.6.3. Properties of Alginate ...14
}
1.6.4. Alginate Based Hydrogels .. 15
1.7. The Use of Analgesics in Poultry ... 16
1.7.1. Salicylic Acid ... 17
 1.7.1.1. Salicylic Acid Mechanism of Action 18
1.7.2. Present Drug Delivery Techniques ... 19
1.7.3. Present Sustained Release Drug Delivery Techniques 20
1.7.4. Composition of Blood .. 21
 1.7.4.1. Salicylic Acid Affinity for Plasma Proteins 21
1.7.5. Previous Studies of Analgesic Effects of Salicylic Acid in Birds ... 22
Thesis Outline .. 23

Chapter 2 .. 24

2. Material and Methods .. 24
 2.1. Materials .. 24
 2.2. Instrumentation and Equipment .. 24
 2.3. Methods for Preparation of Hydrogel Films .. 24
 2.3.1. Synthesis of Sodium Aspirin .. 25
 2.3.2. Stability of the Model Analgesics .. 25
 2.3.3. Synthesis of Calcium Salicylate ... 25
 2.3.4. Preparation of Calcium Hydrogel Films 25
 2.3.5. Preparation of Films with Alternative Cross-Linkers 26
 2.3.6. Entrapment of the Model Analgesic ... 26
 2.4. Methods for In Vitro Characterisation of Hydrogel Films 26
 2.4.1. Fourier Transform Infrared Spectroscopy (FTIR) 26
 2.4.2. Equilibrium Swelling Studies ... 26
 2.4.3. In Vitro Cumulative Release Studies .. 27
 2.4.3.1. SIF Buffer ... 27
 2.4.3.2. Water ... 27
 2.5. Methods for In Vivo Release in Poultry .. 28
 2.5.1. Study Design .. 28
 2.5.2. Hydrogel Preparation ... 28
2.5.3. Drug Administration ... 28
2.5.4. Sample Collection ... 28
2.5.5. Sample Preparation ... 29
2.5.6. Validation Protocol ... 29
2.5.6.1. Lower Limit of Quantification (LLQ) and Detection (LLD) ... 29
2.5.6.2. Linearity .. 29
2.5.6.3. Recovery ... 29
2.5.6.4. Specificity ... 30
2.5.7. Sample Analysis ... 30

Chapter 3 .. 32
3. Results and Discussion ... 32
3.1. Synthesis of Calcium Salicylate .. 32
3.2. Synthesis of Sodium Aspirin .. 32
3.3. Model Analgesic Calibration Curves .. 32
3.4. Stability of the Model Analgesics ... 35
3.5. Hydrogel preparation .. 36
3.5.1. Blank Hydrogel .. 36
3.5.2. Loaded Hydrogel .. 38
3.5.3. Calcium Salicylate Cross-Linked Hydrogel ... 42
3.5.4. Drying Method ... 43
3.6. FTIR .. 44
3.7. Swelling Studies for Select Hydrogels .. 45
3.7.1. Blank Hydrogels ... 45
3.7.2. Hydrogels A, B, and C ... 49
3.7.3. Hydrogels D, E, and F .. 52
3.8. Drug Release Profiles .. 54
3.8.1. Hydrogels A, B, and C ... 54
3.8.2. Hydrogels D, E, and F ... 55
3.8.3. Hydrogels G and H .. 56
3.8.4. Hydrogels I and J .. 59
3.8.5. Hydrogel K .. 62
3.9. In Vivo Experiments on Poultry Using the Hydrogels 63

3.9.1. HPLC Analysis of Processed Plasma Samples 64

3.9.1.1. Preparation of Samples for Analysis 64

3.9.1.2. HPLC Problems 66

3.9.2. HPLC Validation Results 66

3.9.3. Analysis of Plasma Samples 67

Chapter 4 71

4. Conclusions 71

4.1. Recommendations for Future 72

Bibliography 79

Appendix 87

Appendix A. IR spectrum of alginate 87

Appendix B. IR spectrum of sodium salicylate 88

Appendix C. IR spectrum of hydrogel B1 89

Appendix D. IR spectrum of hydrogel B3 90

Appendix E. IR spectrum of hydrogel A 91

Appendix F. IR spectrum of hydrogel D 92
List of Tables

Chapter 1

1. Classification of gels .. 3

Chapter 2

2. Composition of physically cross-linked alginate hydrogels 31

Chapter 3

3. Stability results of sodium salicylate measured in SIF buffer at 4, 21, and 37.5 °C using UV-Vis spectroscopy at λ_{max} of 300 ... 35
4. Stability results of sodium aspirin measured in SIF buffer at 4, 21, and 37.5 °C using UV-Vis spectroscopy at both λ_{max} of 300 and 260 ... 35
5. Equilibrium swelling values for hydrogels B1, B2, B3, and B4 left overnight in water .. 46
6. Equilibrium swelling values for hydrogels B1, B2, B3, and B4 left overnight in SIF .. 47
7. Comparison of maximum swelling values for hydrogels B1, B2, B3, B4, and B5 in water and SIF ... 48
8. Equilibrium swelling values of hydrogels A, B, and C left overnight in water 50
9. Equilibrium swelling values of hydrogels D, E, and F left overnight in water 53
10. Table Illustrating the 5 groups of chickens injected with the altering substances through subcutaneous injection ... 67
List of Figures

Chapter 1

1. Simple Schematic of a hydrogel showing the hydrophilic polymer chains and the chemical or physical cross-links (or bonds) ... 4
2. Hydration of a hydrogel. (a) Dried, water free hydrogel, (b) Hydrogel introduced to water resulting in the formation of primary water (blue), (c) Interaction between primary water and polar hydrophilic group of polymer chain, (d) Formation of secondary water (green), and (e) Formation of free water (purple). ... 7
3. Example mechanism of Schiff’s base reaction between: (a) chitosan and (b) glutaraldehyde ... 11
4. Mechanism of cross-linking between chitosan and genipin .. 12
5. Chemical composition of alginate. A) Composition of β-D-mannuronic acid and α-L-guluronic acid residues. B) composition of alginate with G-blocks, M-blocks, and MG-blocks .. 13
6. Binding of Ca$^{2+}$ by alginate. A) Binding of Ca$^{2+}$ to G-block. B) inter chain formation ... 16
7. Chemical structures of salicyl alcohol glucoside (a), salicylic acid (b), and sodium salicylate (c) .. 17
8. Proposed mechanism of inhibition of COX by aspirin .. 18
9. Selected chemical structures of prostaglandins released when cells are damaged ... 19
10. Illustration of the component of blood samples .. 21

Chapter 3

11. UV-Vis absorption spectrums of sodium salicylate (blue) and sodium aspirin (red) in water over wavelength range of 250-300 nm .. 33
12. Calibration curve of sodium salicylate in SIF buffer using λ_{max} at 300 nm 34
13. Calibration curve of sodium aspirin in SIF buffer using λ_{max} at 260 nm 34
14. Images of blank hydrogels B4 (left) and B1 (right). Hydrogel composition: both contain 1.0 g alginate and 20 ml water, B4 contains 0.2 g calcium chloride and B5 contains 1.0 g calcium chloride .. 37

15. Image of hydrogel B4 and its ability to coat the back of a spoon. Hydrogel composition: 1.0 g alginate, 20 mL water, and 0.2 g calcium chloride 37

16. Image of a loaded hydrogel illustrating the separation effect. Hydrogel composition: 9 g sodium salicylate, 1.0 g alginate, 1.0 g calcium chloride, and 60 mL water ... 39

17. Image of loaded hydrogels illustrating the differences between the colloidal suspensions at different calcium contents, 0.3 g calcium chloride (upper image) and 1.0 g calcium chloride (lower image). Hydrogel composition of left image: 1.0 g alginate and 0.3 g calcium chloride for all, 3 g sodium salicylate and 20 mL water (A), 6 g sodium salicylate and 40 mL water (B), and 9 g sodium salicylate and 60 mL water (C). Hydrogel composition of right image: 1.0 g alginate and 1.0 g calcium chloride for all, 3 g sodium salicylate and 20 mL water (D), 6 g sodium salicylate and 40 mL water (E), and 9 g sodium salicylate and 60 mL water (F) ... 40

18. Image illustrating the formation of copper salicylate during the preparation of a hydrogel. Hydrogel composition: 9 g sodium salicylate, 1.0g alginate, 1.0 g copper sulfate, and 60 mL water .. 41

19. Images illustrating the hydrogel cross-linked with calcium salicylate, before oven drying (left) and after oven drying (right). Hydrogel composition: 1.0 g alginate, 0.3 g calcium salicylate, and 20 mL water ..43

20. Image illustrating the comparison between the drying techniques used in this project, oven drying (upper image) and lyophilisation (lower image). Hydrogel composition: All hydrogels have 1.0 g alginate and 0.3 g calcium chloride, 3 g sodium salicylate and 20 mL water (A1 and A2), 6 g sodium salicylate and 40 mL water (B1 and B2), and 9 g sodium salicylate and 60 mL water (C1 and C2) .. 44

21. Swelling profiles of hydrogels B1 (blue), B2 (red), B3 (green) and B4 (purple) cross-linked with decreasing calcium chloride content. Swelling profile completed in water as the medium. Hydrogel composition: All hydrogels have 1.0 g alginate and 20 mL water, 1.0 g calcium chloride (B1), 0.5 g calcium chloride (B2), 0.3 g calcium chloride (B3), and 0.2 g calcium chloride (B4) 46
22. Swelling profiles of hydrogels B1 (blue), B2 (red), B3 (green) and B4 (purple) cross-linked with decreasing calcium chloride content. Swelling profile completed in SIF as the medium. Hydrogel composition: All hydrogels have 1.0 g alginate and 20 mL water, 1.0 g calcium chloride (B1), 0.5 g calcium chloride (B2), 0.3 g calcium chloride (B3), and 0.2 g calcium chloride (B4)

23. Swelling profiles of hydrogels, A (blue), B (red), and C (green) cross-linked with 0.3g calcium chloride. Swelling profile completed in water as the medium. Hydrogel composition: The hydrogels have 1.0 g alginate and 0.3 g calcium chloride, 3 g sodium salicylate and 20 mL water (A), 6 g sodium salicylate and 40 mL water (B), and 9 g sodium salicylate and 60 mL water (C)

24. Swelling profiles of hydrogels D (blue), E (red), and F (green) cross-linked with 1.0 g calcium chloride. Swelling profile completed in water as the medium. Hydrogel composition: All hydrogels have 1.0 g alginate and 1.0 g calcium chloride, 3 g sodium salicylate and 20 mL water (D), 6 g sodium salicylate and 40 mL water (E), and 9 g sodium salicylate and 60 mL water (F)

25. Drug release profiles of hydrogels A (blue), B (red), and C (green) in water. Hydrogel compositions: All hydrogels have 1.0 g alginate and 0.3 g calcium chloride, 3 g sodium salicylate and 20 mL water (A), 6 g sodium salicylate and 40 mL water (B), and 9 g sodium salicylate and 60 mL water (C)

26. Drug release profiles of hydrogels D (blue), E (red), and F (green) in water. Hydrogel compositions: All hydrogels have 1.0 g alginate and 1.0 g calcium chloride, 3 g sodium salicylate and 20 mL water (D), 6 g sodium salicylate and 40 mL water (E), and 9 g sodium salicylate and 60 mL water (F)

27. Drug release profile of hydrogel H in SIF buffer. Hydrogel composition: 3.0 g alginate, 1.0 g calcium chloride, 12.0 g sodium salicylate, and 80 mL water ...

28. Comparison of drug release profiles for hydrogels G (blue) and H (red) in SIF medium. Hydrogel composition: both have the 3.0 g alginate and 1.0 g calcium chloride, 3.0 g sodium salicylate and 20 mL water (G) and 12.0 g sodium salicylate and 80 mL water (H) ..

29. Drug release profiles for hydrogels I (blue) and J (red) in SIF medium. Hydrogel composition: Both have the 1.0 g alginate, 3.0 g sodium aspirin, 0.2 g calcium chloride and 20 mL water (I) and 3.0 g sodium aspirin, 1.0 g calcium chloride and 20 mL water (J) ..
30. Drug release profile one of hydrogel K in water as the medium. Hydrogel composition: 1.0 g alginate, 0.3 g calcium salicylate, and 20 mL water 62
31. Drug release profile one of hydrogel K in water as the medium. Hydrogel composition: 1.0 g alginate, 0.3 g calcium salicylate, and 20 mL water 63
32. Concentration time curve for sodium salicylate after subcutaneous injection of group 1 (orange), group 2 (red), group 3 (blue), group 4 (purple), and group 5 (green) in broiler chickens. The data points represent the mean of the 6 chickens, with a total of 24 chickens in the whole study. The red dotted line indicates the minimum effective plasma concentration of sodium salicylate required to maintain analgesia in chickens ... 68

Chapter 4

33. Molecular structures of meloxicam (left) and butorphanol tartrate (right) 74
34. Chemical structures of cyclodextrin monomer (upper left image) and cyclodextrin α-(1,4) linkage (upper right image). Structural schematics of β-cyclodextrin (bottom image) ... 76