Acute nociception in neonatal pigs undergoing tail docking: Influence of docking method and age, evaluation of pain mitigation strategies, and assessment of the potential for longer-term pain

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Veterinary Science

At Massey University, Turitea, Palmerston North, New Zealand

Nikki J Kells

2017
ABSTRACT

Tail docking of pigs is performed routinely in many parts of the world to reduce the incidence of unwanted tail biting behaviour. Whilst tail biting can have serious welfare consequences for affected pigs, tail docking may also negatively affect pig welfare as a result of acute pain induced by the procedure itself, as well as through long-term changes in afferent neural inputs from the remaining tail stump. The aims of this thesis were to examine the influences of docking method and piglet age on acute nociceptive responses to tail docking; to evaluate the efficacy of selected anti-nociceptive strategies in mitigating acute nociceptive responses to tail docking; to determine whether docking method affects subsequent neural morphology of the healed tail stump. The minimal anaesthesia model (MAM), which involves analysis of electroencephalographic (EEG) data, was used to evaluate acute nociceptive responses and to ascertain the efficacy of anti-nociceptive strategies. Histopathological examination of tissue harvested from tail tips was performed to evaluate alterations in neural morphology that might be associated with long-term changes in pain processing.

Comparison of the acute nociceptive responses of 2- and 20-day-old pigs to tail docking revealed little evidence of nociception in the younger age group compared with a typical response in the older pigs. In addition, total EEG power was lower in 2 day-old pigs. These results suggest that there are differences in either neural maturity, and/or in nociceptive processing between the two ages.

Tail docking using cautery iron appears to be less acutely painful to pigs than tail docking using clippers. However, the longer-term pain consequences associated with the two methods need to be assessed before one method is recommended over the other.

Prior application of a topical anaesthetic (EMLA) cream to the tail abolished EEG indicators of acute nociception in pigs tail docked using clippers, whereas prior administration of oral meloxicam had no effect on EEG responses. When no analgesia was used, tail docking using cautery iron ameliorated EEG indicators of nociception, relative to docking using clippers. Thus, prior administration of EMLA cream or the use of cautery iron in place of clippers have the potential to reduce the acute pain during routine tail docking.

Acute EEG responses of pigs to the noxious stimulus of tail docking varied significantly with postnatal age over the first 15 days of life. Docking at 1 day-of-age elicited no EEG evidence of nociception, whilst cortical responsiveness to tail docking increased with postnatal age across the range of 5–15 days. This enhanced responsiveness may be due to the gradual withdrawal of fetal neurosuppressive mechanisms after birth, or rapid postnatal maturation of the cerebral cortex, or a combination of both.

Tail docking using both side clippers and cautery iron resulted in the formation of neuromas, which have been associated with neuropathic pain, in the tail stump. Neither the proportion of tails with neuromas, nor the degree of abnormal nerve proliferation in the tail tip differed between the two docking methods. This suggests no longer-term welfare advantage of one method over the other, at least in terms of the potential for alterations in pain processing following stimulation of tail stump nociceptors.

In terms of best practice guidelines for the performance of tail docking in pigs, this research provides support for current recommendations that tail docking, along with other painful husbandry procedures, be performed within one week of birth. Furthermore, tail docking with cautery induced less acute pain than docking with clippers, whilst both methods cause long-term changes in neural morphology in the tail stump. Docking using cautery may therefore be preferable to docking with clippers. Whilst cautery reduces the acute pain associated with docking relative to clippers, prior application of a topical anaesthetic cream (EMLA) completely abolished acute nociceptive responses to. Prior administration of topical anaesthesia, or the use of a cautery iron in place of clippers, has the potential to improve the welfare of pigs undergoing routine tail docking.
ACKNOWLEDGEMENTS

This work would not have been possible without the support and guidance of my amazing supervisory team. I would like to say a huge thank you to Ngaio Beausoleil and Craig Johnson from Massey University, and Mhairi Sutherland from AgResearch; your knowledge, expertise, patience and encouragement were inspirational throughout this process. It has been a privilege to work alongside you and to learn so much from you. Thanks also to Professor David Mellor, Amanda McIlhone, Paul Chambers and Kavitha Kongara from the Animal Welfare Science and Bioethics Centre (AWSBC) group for your support, comments and insights.

Thank you to Rebecca Morrison from Rivalea Australia, with whom I collaborated on much of this research. Your experience, knowledge and support in conducting these studies was invaluable.

I would also like to extend my gratitude to several Massey University staff who provided practical assistance throughout my PhD: Neil Ward for computing, technical and laboratory assistance; Sheryl Mitchinson, Ty Mirko, Katherine Reid, Antony Jacob and Santosh Kumar for laboratory assistance; and Steve Haslett and Rao Dukkipati for statistical advice. Thanks also to the staff at Wairaka and Ratanui farms that provided the pigs used in this research, and to Paul Chambers, Rebecca Hickson and Rachel Stratton for re-homing pigs.

This PhD was made possible through financial support in the form of a Massey University Doctoral Scholarship, along with research funding from Australian Pork Ltd, the United States National Pork Board, the AWSBC, and Massey University’s Institute of Veterinary, Animal and Biomedical Sciences (IVABS).

Finally, I would like to thank my family: my Mum Marj Kells, and late Father Eric Kells, who raised me to believe that anything is possible with hard work and the right attitude. I wouldn’t be where I am without you – literally or figuratively. And to my daughters, Tayla and Samara; thank you for believing in me, putting up with me, encouraging me and taking such pride in everything I have accomplished. We are an incredible team.

“Life is not easy for any of us. But what of that? We must have perseverance and above all confidence in ourselves. We must believe that we are gifted for something and that this thing must be attained”

– Marie Curie
TABLE OF CONTENTS

ABSTRACT .. II

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS ... IV

LIST OF TABLES ... VIII

LIST OF FIGURES ... X

LIST OF PUBLICATIONS .. XII

CHAPTER 1 GENERAL INTRODUCTION .. 1

1.1 THESIS STRUCTURE .. 1

1.2 TAIL DOCKING ... 2

 1.2.1 Description .. 2

 1.2.2 Rationale and justification ... 2

 1.2.3 Legislation and recommendations .. 3

 1.2.4 Prevalence .. 4

 1.2.5 Welfare implications .. 4

1.3 TAIL BITING .. 6

 1.3.1 Prevalence .. 6

 1.3.2 Economic implications ... 6

 1.3.3 Welfare implications .. 6

 1.3.4 Risk factors and alternative preventive strategies 7

 1.3.5 The future of tail docking ... 9

1.4 PAIN ... 10

 1.4.1 Definition .. 10

 1.4.2 Nociceptive pain .. 10

 1.4.3 Inflammatory pain .. 10

 1.4.4 Neuropathic pain .. 10

1.5 PAIN ASSESSMENT IN ANIMALS ... 11

 1.5.1 The EEG as an indicator of cerebral cortical activity 11

 1.5.2 Minimal anaesthesia model ... 12

1.6 RESEARCH OBJECTIVES ... 14

1.7 REFERENCES .. 15

CHAPTER 2 ELECTROENCEPHALOGRAPHIC RESPONSES OF ANAESTHETISED PIGS
(SUS SCROFA) TO TAIL DOCKING USING CLIPPERS OR CAUTERY IRON, PERFORMED AT
TWO OR TWENTY DAYS OF AGE ... 21

2.1 ABSTRACT ... 22
2.2 INTRODUCTION ... 22
2.3 MATERIALS AND METHODS ... 23
 Anaesthesia .. 23
 EEG recording .. 24
 Experimental procedure .. 24
 Data analysis ... 24
 Statistical analyses ... 24
2.4 RESULTS ... 25
2.5 DISCUSSION .. 29
2.6 CONCLUSIONS ... 31
2.7 REFERENCES ... 32

CHAPTER 3 ELECTROENCEPHALOGRAPHIC ASSESSMENT OF ORAL MELOXICAM, A
TOPICAL ANAESTHETIC CREAM (EMLA) AND CAUTERY IRON FOR MITIGATING ACUTE
PAIN IN PIGS (SUS SCROFA) UNDERGOING TAIL DOCKING ... 37
3.1 ABSTRACT .. 38
3.2 INTRODUCTION .. 38
3.3 MATERIALS AND METHODS ... 39
 Anaesthesia .. 40
 Electrophysiology ... 40
 Experimental procedure .. 40
 Data analysis ... 40
 Statistical analyses ... 41
3.4 RESULTS ... 41
3.5 DISCUSSION .. 45
3.6 CONCLUSION ... 47
3.7 REFERENCES ... 48

CHAPTER 4 POSTNATAL DEVELOPMENT OF ELECTROENCEPHALOGRAPHIC
RESPONSES TO NOXIOUS STIMULATION IN PIGS (SUS SCROFA) BETWEEN THE AGES
OF 1 AND 15 DAYS ... 53
4.1 ABSTRACT .. 54
4.2 INTRODUCTION .. 54
4.3 MATERIALS AND METHODS ... 55
 Anaesthesia .. 55
 Electrophysiology ... 55
 Experimental procedure .. 56
 Data analysis ... 56

V
Statistical analyses ... 56

4.4 RESULTS .. 57
 Between-age comparison of baseline EEG .. 58
 Analysis of all ages combined ... 58
 Analysis of each age separately ... 60
 Analysis of age-blocked data ... 61

4.5 DISCUSSION ... 63

4.6 ANIMAL WELFARE IMPLICATIONS ... 68

4.7 REFERENCES .. 69

CHAPTER 5 COMPARISON OF NEURAL HISTOMORPHOLOGY IN TAIL TIPS FROM
PIGS (Sus scrofa) DOCKED USING CLIPPERS OR CAUTERY IRON ... 73

5.1 ABSTRACT .. 74

5.2 IMPLICATIONS .. 74

5.3 INTRODUCTION .. 74

5.4 MATERIALS AND METHODS ... 76
 Animals and housing .. 76
 Experimental procedures .. 76
 Collection and preparation of tail tissue ... 77
 Histology and immunohistochemistry .. 77
 Statistical analyses ... 78

5.5 RESULTS .. 78
 Descriptive neuroanatomy ... 78
 Inter-rater reliability ... 81
 Comparison of neural histomorphology ... 81

5.6 DISCUSSION .. 82

5.7 CONCLUSION .. 83

5.8 REFERENCES .. 84

CHAPTER 6 GENERAL DISCUSSION ... 87

6.1 MAJOR FINDINGS AND FUTURE RESEARCH .. 88

6.2 METHODOLOGICAL CONSIDERATIONS .. 93

6.3 IMPLICATIONS FOR ANIMAL WELFARE AND TAIL DOCKING PRACTICE 94

6.4 CONCLUSIONS ... 95

6.5 REFERENCES .. 96

APPENDIX A COMPARISON OF EEG DATA RECORDED FROM THE LEFT AND RIGHT
CEREBRAL CORTEXES IN CHAPTER 3 .. 99
LIST OF TABLES

Table 1.1 Major risk factors for tail biting among docked and undocked pigs, as identified by the European Food Safety Authority’s Panel on Animal Health and Welfare (EFSA 2007)8

Table 2.1 The effects of age, time, treatment and their interactions on the median frequency (F50), spectral edge frequency (F95) and total power (P_TOT) of the pig electroencephalogram following tail docking using side clippers (n =20) or cautery iron (n =20), performed at 2 or 20 days-of-age ..25

Table 2.2 Comparison of the mean (SEM) median frequency (F50), spectral edge frequency (F95) and total power (PTOT) of the pig electroencephalogram at consecutive 15-second intervals in 2-day-old and 20-day-old pigs after tail docking using side clippers (n =10 per age) or cautery iron (n =10 per age). Data are shown as mean values over consecutive 15-second intervals after docking, with baseline representing the mean of the 60 seconds immediately preceding tail-docking...27

Table 3.1 Body temperature range (ºC) and maximum PE’CO2 (kPa) recorded during anaesthesia for pigs in each treatment group ...42

Table 3.2 The effects of treatment, time and their interaction on the median frequency (F50), 95% spectral edge frequency (F95) and total power (PTOT) of the pig electroencephalogram (EEG) following tail docking with or without analgesic ..42

Table 3.3 Mean ± SEM heart rate (beats per minute) as a percentage of individual baseline at time points after tail docking (time 0) for pigs tail docked using: clippers without prior analgesia (CON), clippers with prior administration of meloxicam (MET), clippers with prior application of EMLA cream (EMLA), or cautery iron without prior analgesia (CAUT)..45

Table 4.1 Effects of age, time, test order and litter on the change in EEG summary variables following tail docking in pigs aged 1–15 days. Results are based on analyses of transformed (% baseline) data..59

Table 4.2 Effect of time on F50, F95 and P_TOT of the EEG following tail docking in pigs aged 1, 5, 7, 10, 12 and 15 days ..61

Table 4.3 Effects of age, time, and their interaction on the F50, F95 and P_TOT of the pig EEG following tail docking, using data blocked into ≤7 or >7 days of age ..62

Table 5.1 Number of pig deaths and removals due to illness or injury among pigs with intact tails (CONTROL, n =40) and those tail docked using clippers (CLIP, n =40) or cautery iron (CAUT, n =40) from the full cohort of 120 pigs used in the wider study..76

Table 5.2 Summary of nerve histomorphology scores from cross sections from the distal tail tip of undocked (CONTROL) clipper-docked (CLIP) and cautery-docked (CAUT) pigs. Where score of 1 = discrete well organised nerve bundles (normal morphology); 2 = moderate proliferation and disorganisation within fibrous connective tissue, affecting less than half the circumference of the tail; 3 = marked proliferation to form almost continuous disorganised bundles OR non-continuous enlarged bundles compressing the surrounding densely fibrous connective tissue. Scores of 2 or 3 indicate neuroma formation..79

Table A.1 Results of statistical comparison of EEG spectral data recorded from the left and right cerebral cortices of 21-day-old pigs undergoing tail docking with or without prior analgesia103
Table B.1 Effect of piglet age (10, 12 or 15 days) and recording period (pre tail-dock baseline, pre pentobarbital injection and post pentobarbital injection), and their interaction on the summary variables FS0, F95 and P10, of the EEG... 112
LIST OF FIGURES

Figure 1.1 Example of a frequency spectrum from a 1-second EEG epoch recorded from a 20-day-old pig, illustrating how the median frequency (frequency below which 50% of the total EEG power is located), 95% spectral edge frequency (frequency below which 95% of the total EEG power is located) and total power (area under the curve) are derived…………………………12

Figure 2.1 Comparison of the mean (SEM) median frequency (F50) of the pig electroencephalogram at consecutive 15-second intervals following tail docking with either clippers (CLIP, circle; n =20) or cautery iron (CAUT, square; n =20). Baseline (Base) represents the mean of the 60 seconds immediately preceding tail docking. Open symbols indicate post-docking time points at which the mean differed from baseline within each treatment (adjusted p <0.05)………………26

Figure 2.2 Comparison of the changes in mean (SEM) 95% spectral edge frequency (F95) of the pig electroencephalogram following tail docking by side clippers (CLIP) at 2 (black triangle; n =10) and 20 (blue circle; n =10) days-of-age, and cautery iron (CAUT), in pigs aged 2 (green diamond II n =10) and 20 (red square II n =10) days-of-age. Data are shown as mean (SEM) values for consecutive 15-second intervals after docking, with Baseline representing the mean of the 60 seconds immediately preceding tail docking. Open symbols indicate post-docking time points at which the mean differed from baseline within treatment (adjusted p <0.05). Superscript characters indicate time points at which means differed between treatments (adjusted p <0.05)…………………………………………………………28

Figure 3.1 The effects of a) treatment and b) time on the 95% spectral edge frequency (F95) of the pig EEG following tail docking. Data are presented as the mean ± SEM, standardised to a percentage of baseline (pre-docking) mean. Treatment means with different superscripts differed significantly (p <0.05). Asterisks indicate post-docking time points that differed to baseline (p <0.05)…………………………………………………………………………………………………43

Figure 3.2 Comparison of the changes in a) median frequency (F50) and b) total power (PTOT) of the pig electroencephalogram (EEG) following tail docking (time 0, dotted line) using either: clippers without prior analgesia (CON); cautery iron without prior analgesia (CAUT); clippers following prior administration of meloxicam (MEL); or clippers following prior application of topical anaesthetic (EMLA). Data are presented as the mean ± SEM of consecutive non-overlapping 30-second blocks of EEG, standardised to a percentage of baseline (pre-docking) mean. Asterisks indicate post-docking time points that differed to baseline within a treatment (* p <0.05; ** p <0.01). Different superscripts indicate means differed significantly at a given time point (p <0.05)…………………………………………………………………………44

Figure 4.1 Diagram illustrating the consecutive non-overlapping time periods used for statistical analyses of transformed data. B = baseline. Mean F50, F95 and Ptot were calculated for each period in each individual …………………………………………………………………………………………57

Figure 4.2 Comparison of baseline a) F50 and b) F95 of the EEG of pigs aged 1, 5, 7, 10, 12 and 15 days-of-age. Data are presented as mean ± SEM. Superscript letters denote means that differ significantly (Bonferroni adjusted p <0.05)……………………………………………………..56

Figure 4.3 Comparison of the changes in mean (± SEM) a) F95 and b) Ptot of the EEG following tail docking (time 0) in pigs aged 1, 5, 7, 10, 12 and 15 days-of-age. Data are presented as percentages of baseline mean. Means at the same time points with different letters differed significantly (Bonferroni adjusted p <0.05)……………………………………60
Figure 4.4 Comparison of mean a) F95 and b) PTOT of the EEG in pigs aged ≤7 days (comprised of data from 1-, 5-, and 7-day-old pigs) or >7 days (comprised of data from 10-, 12- and 15-day-old pigs) following tail docking at time 0. Asterisks indicate mean differed from baseline within age group (Dunnett’s p <0.05). Superscript symbols indicate differences between age groups at common time points (Bonferroni adjusted p <0.05) .. 63

Figure 4.5 Qualitative comparison of the changes in mean F50, F95 and P2TOT of the EEG following tail docking (time 0) in pigs aged 1, 5, 7, 10, 12 and 15 days-of-age. For ease of distinguishing between ages, non-transformed data is presented and standard errors have been omitted 66

Figure 5.1 Schematic diagram indicating sampling sites for histological analysis. Undocked tails (A) and docked tail stumps (B) collected at slaughter were cross-sectioned 5 mm from the distal tip (x). Undocked tails were additionally cross-sectioned 92 mm from the root (y), representing the mean length of all docked tails. Tail tips collected from 2-day-old pigs at the time of docking (C) were cross-sectioned at the docking site (z) .. 79

Figure 5.2 Control (undocked) pig tail sectioned at level equivalent to docking site, showing nerve histomorphology score=1. A: H&E; B: Masson’s trichrome; C: S100 (all 20X magnification) 80

Figure 5.3 Cross section 5 mm from the tip of a docked pig tail, showing nerve histomorphology score=2. A: moderately disorganised proliferative nerve bundles of varying sizes, surrounded by thin, frequently loosely arranged layers of fibrous connective tissue. H&E, 4X magnification. Inset: 20X magnification at same site. B: Masson’s trichrome (magnification 20X). C: Small to medium nerve fibres stained brown with S100 (magnification 20X) .. 80

Figure 5.4 Cross section 5 mm from the tip of a docked pig tail, showing nerve histomorphology score=2. A: moderately disorganised proliferative nerve bundles of varying sizes, surrounded by thin, frequently loosely arranged layers of fibrous connective tissue. H&E 4X magnification. Inset: 20X magnification at same site. B: Masson’s trichrome (magnification 20X). C: Small to medium nerve fibres stained brown with S100 (magnification 20X) .. 81

Figure B.1 Comparison of mean (±SEM) F50, F95 and PTOT of the pig EEG (n =29) over the 60-second period prior to tail docking (B1), the 60-second period prior to pentobarbital injection (B2), the 60-second period immediately after pentobarbital injection (P1) and the 60-second period from 61–120 seconds after pentobarbital injection (P2). *Means with different superscripts were significantly different (Bonferroni adjusted P <0.05). *Means with asterisks tended to differ (adjusted P =0.08) .. 113

Figure B.2 The changes in mean F50 F95 and PTOT of the pig EEG (all ages combined), relative to pre-treatment baseline mean, following intraperitoneal injection of sodium pentobarbital (250 mg/kg; vertical dashed line) .. 114
LIST OF PUBLICATIONS

Publications related to thesis research

Johnson CB, Kells N, Sutherland MA, Beausoleil NJ. Validation of EEG measures for pain assessment in piglets aged 0 to 10 days. Final Report NPB C-13–188, 2015

Kells NJ, Beausoleil NJ, Johnson CB, Sutherland MA, Morrison RS, Roe W. Comparison of neural histomorphology in tail tips from pigs docked using clippers or cauterity iron. Animal, In Press. (Accepted for publication 28 September 2016)

Kells NJ, Beausoleil NJ, Sutherland MA, Morrison RB, and Johnson CB. Electroencephalographic assessment of oral meloxicam, topical anaesthetic cream and cauterity iron for mitigating acute pain in pigs (Sus scrofa) undergoing tail docking. Veterinary Anaesthesia & Analgesia, In Press. (Accepted for publication 15 February 2017)

Kells NJ, Beausoleil NJ, Sutherland MA, Morrison RB, and Johnson CB. Electroencephalographic responses of anaesthetised pigs (Sus scrofa) to tail docking using clippers or cauterity iron, performed at two or twenty days of age. Veterinary Anaesthesia & Analgesia, In Press. (Accepted for publication 14 February 2017)

Publications completed in parallel with thesis research

Kongara K, McIlhone AE, Kells NJ, Johnson CB. Electroencephalographic evaluation of decapitation of the anaesthetized rat. Laboratory Animals 48, 15–9, 2014

McIlhone AE, Beausoleil NJ, Kells NJ, Johnson CB, and Mellor DJ. Effects of halothane on the electroencephalogram of the chicken. Submitted to Veterinary Anaesthesia & Analgesia April 2017