Comparative Study between Fixed-Time Artificial Insemination and Natural Mating on Reproductive Performance (conception and pregnancy rates) of Mpwapwa breed cows in Tanzania

A thesis presented in partial fulfillment of the requirement for the degree of

Master of Science

in

Animal Science

Institute of Veterinary, Animal and Biomedical Sciences

Massey University

Palmerston North, New Zealand

by

Kabuni Thomas Kabuni

2017
Table of Contents

Table of Contents ... 2

List of Tables .. 3
List of Figures ... 4
Abstract .. vi
Declaration ... vii
Dedication .. viii
Acknowledgements .. ix
List of abbreviations .. x

Chapter 1 ... 2

General introduction .. 2

Literature Review ... 9

Economics of Beef Production in Tanzania ... 9

OESTROUS CYCLE IN CATTLE .. 14

- Hormonal control of oestrous cycle ... 14
- Follicular waves ... 15

Relationship between the timing of luteolysis and the timing of oestrus 19

OESTRUS SYNCHRONIZATION USING PROSTAGLANDIN .. 20

- Prostaglandin F$_{2a}$-based breeding platforms (programs) .. 21
- Methods of synchronizing follicular waves using prostaglandin .. 21

CATTLE FERTILITY .. 23

- Cows ... 23
- Bulls .. 24

Summary and problem statement .. 28

Research hypothesis ... 28

Research questions .. 28

Chapter 3 ... 29

Materials and Methods ... 29

- Study area .. 29
- Selection of bulls: Breeding Soundness Evaluation ... 30
- Selection of cows .. 30
- Management of experimental animals .. 31
Experimental procedures .. 32
Statistical analysis .. 33
Chapter 4 .. 34
Results ... 34
Bull evaluation ... 34
Scrotal circumference of the four selected bulls used in the study .. 34
Gross motility results after testing 75 semen straws of each of the two
Mpwapwa breed bulls .. 34
Cow evaluation .. 34
Body condition score results for the 200 study cows one month prior to and at
the start of the breeding season .. 34
Descriptive data for the four groups of cows used to compare NM with FTAI 36
Oestrus behavioural signs for cows treated with PGF2α in the four groups 37
Summary of pregnancy results across group and treatment method 37
Results of univariable logistic regression with their respective odd ratios and p-values 38
Chapter 5 .. 39
Discussion ... 39
Prostaglandin F2α and breeding methods ... 39
Other factors affecting fertility in beef cattle ... 40
Bulls .. 40
Management of animals .. 40
Conclusion ... 41
LIST OF REFERENCES .. 42

List of Tables
Table 1 Land resource and livestock population in Tanzania .. 2
Table 2 Production and Consumption of Livestock and Poultry Products from 2005-2009 .. 4
Table 3 Dairy Cattle Productivity in the Traditional and Improved Dairy Herd 6
Table 4 Beef Cattle Productivity in the Traditional Sector and in the Commercial NARCO
Ranches ... 7
Table 5 Production potential of farms under MLUs ... 9
Table 6 Production potential of ranches under NARCO .. 10
Table 7 Reproductive and Production Performance of Ranches under NARCO 12
Table 8 Rejection percentages of young and mature bulls according to breeding soundness evaluation (BSE) steps. ... 25
Table 9 Bulls were selected randomly or had more than 80% normal sperm cells. All bulls had a scrotal circumference of more than 32cm and successfully passed a breeding soundness evaluation (BSE) test .. 27
Table 10 Timing of key events for each mating group. Cows in group PG were treated with 500 μg of cloprostenol on Day 0 and then 13 days later if oestrus not observed. N/A, not applicable. All cows were pregnancy tested on 26-27/06/16. .. 32
Table 11 SC of the four selected bulls used in the study .. 34
Table 12 Gross motility results after testing 75 semen straws of each of the two Mpwapwa breed bulls. .. 34
Table 13 BCS results for the 200 study cows one month prior to and at the start of the breeding season ... 34
Table 14 Descriptive data for the four groups of cows used to compare NM with FTAI. Within each group there was no difference between the two treatment groups in any of these factors. (P >0.25). ... 36
Table 15 Oestrus behavioural signs for cows treated with PGF2α in the four groups. 37
Table 16 Summary of pregnancy results across group and treatment method. 37

List of Figures
Figure 1 Hormonal control of oestrus cycle; relationship with follicular growth 15
Figure 2 Follicular wave dynamics .. 17
Figure 3 Ovsynch protocol .. 22
Figure 4 C0-synch protocol .. 22
Figure 5 Select-synch protocol .. 23
Figure 6 Ovsynch + Progesterone/CIDR .. 23
Figure 7 Rainfall distribution in Mpwapwa district (Source: Tanzania Livestock Research Institute, 2014-2015). This study was undertaken during the rainy season breeding period i.e. March-May ... 29
Figure 8 Average temperature distribution in Mpwapwa district (Source: Tanzania Livestock Research Institute, 2014-2015 ... 30
Figure 9 Mpwapwa breed cow (A) and Mpwapwa breed bull (B) 31
Figure 10 Simplified diagram illustrating the experimental procedures applied in 4 experimental groups of the project .. 33
Abstract

The aim of this project was to assess whether using a PGF$_2\alpha$ synchronization protocol in Mwapwa cattle would improve reproductive performance. A standard 14-day PGF$_2\alpha$ synchronization protocol with a single FTAI was compared to NM over a 12-weeks breeding season. At the end of the study, 39/100 cows were pregnant in the FTAI group and 49/100 cows were pregnant in the NM group. This difference was not statistically significant (P=0.21), although the odds ratio of pregnancy was lower in the FTAI group than the NM group (unadjusted RR=0.8; 95% - CI 0.58-1.09). However, cattle in the PGF$_2\alpha$-treated group were only inseminated once, whereas the NM group could be naturally mated on multiple occasions during the breeding season; In addition, the use of PGF$_2\alpha$ allowed the use of AI, which is not feasible under most Tanzanian systems when cattle come into oestrus naturally. Thus, the results of this study suggest that PGF$_2\alpha$-based synchronization and FTAI, particularly if used alongside natural mating, can improve the reproductive performance of Mwapwa breed cattle as well as allowing for greater genetic gain than occurs with naturally mated cattle.

The proportion of cows that came into heat and displayed behavioural signs after administration of the first PGF$_2\alpha$ injection was very low (only 10/100 cattle). The reason for this poor response is unclear. It could be that oestrus detection was not very effective, or that a higher than expected proportion of cattle did not have a responsive CL. The most likely cause of the latter is a higher proportion of cattle in anoestrus. Further investigation of the reproductive state of Mwapwa cattle at the start of the breeding season would identify how important anoestrus is as a cause of poor reproductive performance. If anoestrus is common, identifying cattle in anoestrus at the start of the season could be useful, as they could be treated using progesterone-based programmes and cattle with a CL could be treated with PGF$_2\alpha$.

Key words: Mwapwa breed cattle, PGF$_2\alpha$ synchronization protocol, FTAI, NM, Reproductive performance.
Declaration

All rights and copyright of this thesis are reserved to the author. Permission is denied to access a copy of this thesis for illegal uses except for academic and research purposes. Author’s permission is considered to be an important pre-requisite for any production and publication of this thesis elsewhere.
Dedication

My dedication concerning this thesis goes firstly to my beloved wife Anna Abraham Dumly for her sacrifice and words of motivation and inspiration meant a lot to the completion of this work, my sons Mruga Kabuni Thomas and Imori Kabuni Thomas for their tolerance of missing my presence at home while I was away on studies. Secondly to my mother Mesuri Abunuasi Mtoka and my late father Thomas Kabuni for building a good foundation in my education life. Thirdly to my brothers George Thomas Kabuni, Mtoka Thomas Kabuni, Pascas Mragili and my sisters Muse Thomas Kabuni and Mugesi Thomas Kabuni for their support. Lastly to my supervisors Professor Tim J. Parkinson and Doctor Richard Laven for their guidance and assistance in making sure this thesis is successfully completed.
Acknowledgements

I express my sincere appreciations to the New Zealand government through its Ministry of Foreign Affairs and Trade (MFAT) for its sponsorship and support in making sure my goal is achieved and become realized during my master’s studies at Massey University (MU). Special appreciations to my supervisors Professor Tim J. Parkinson (main supervisor) also as my lecturer in Reproductive Physiology Course and Doctor Richard Laven (co-supervisor) for your sincere guidance and support in making sure I am in a right tract with my thesis. Your critics, comments, and statistical assistance helped me to a great extent towards the completion of this thesis. I really enjoyed your chemistry while working with you and I think your combination makes you to be special and unique.

I also express my sincere appreciations to the International Students Support Office (ISSO) and to the Institute of Veterinary Animal and Biomedical Sciences (IVABS) staff members for their support and kindness during my two years of stay at Massey University (MU). My fellow postgraduate students, I remember your collaborations during the time of our coursework through group discussions. Tanzania Livestock Research Institute (TALIRI) for its permission to conduct my research project in its environment and have access to use its research animals and staff members; Dr. Eliakunda Kimbi, Dr. Daniel Komuhangilo, Dr. Seleman Masola, Masao, Kimaro, Mbisha, Msaka, Makoko, Natujwa, Salome, Millinga and Machira. National Artificial Insemination Center (NAIC) for the supply of semen straws and ultrasonography machine. Professor Noel Kanuya and Aloyce Bunyanga from the department of Veterinary Surgery and Theriogenology at Sokoine University of Agriculture (SUA) for their support and assistance.

Lastly, my sincere appreciations go to my family for their support and patience during the entire period of my studies. Massey University’s Student community, Staff members, Campus living, Library, and people of New Zealand for their hospitality.
List of abbreviations

AI Artificial Insemination

AART Assisted Animals’ Reproductive Technologies

BCS Body Condition Score

BSE Breeding Soundness Evaluation/Examination

CI Confidence Interval

CL Corpus Luteum

CIDR Controlled Internal Drug Release (Intravaginal progesterone insert)

ET Embryo Transfer

FTAI Fixed-Time Artificial Insemination

FSH Follicle Stimulating Hormone

GnRH Gonadotrophin Releasing Hormone

LH Luteinizing Hormone

LU Livestock Unit

MOET Multiple Ovulation and Embryo Transfer

NM Natural Mating

PD Pregnancy Diagnosis

PGF2α (PGF/PG/ F2α) Prostaglandin hormone

RR Relative Risk

SC Scrotal Circumference