Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Pilot scale Pyrolyser: Compliance and Mechanistic Modeling

A thesis presented in partial fulfillment of the requirement for the degree of

Master of Engineering

In

Chemical and Process Engineering

At Massey University, Palmerston North

New Zealand

Nadeem Salahaddin Abdul Caco

2017
Preface

A pyrolysis reactor was built in a previous project by Bridges et al (2013). The reactor is cylindrical in geometry, with a height of 1000 mm and an internal diameter of 750 mm, it stands vertically. There is a 900 mm tall and 100 mm in diameter perforated core in the center of the reactor. At the base, a combustion chamber provides the hot gases required for heating. The hot gases produced travel up and around the reactor through an annulus region of 11 mm. Heat from the gases is transferred to the reactor wall and then to the wood-chips inside. As drying and pyrolysis reactions occur, gases flow in the same direction as the heat towards the perforated core at the center. Hot pyrolysis gases then flow downwards towards the combustion chamber where they are partially combusted before flowing around the reactor and out the flue stack. This project aimed at mathematically modeling this reactor and also improving the way emissions are released so that it complies with EPA air quality standards.

A mathematical model of an ‘open source’ pilot-scale pyrolysis reactor was produced to predict the product yield, carbon foot-print, biochar quality and the time taken to achieve complete pyrolysis. A non-equilibrium thermodynamic approach was used which allowed for the use of COMSOL Multi-Physics to solve the model. The Finite Element Method (FEM) was used to solve the system of equations. Pyrolysis kinetics are complex and no single model has yet been widely accepted, therefore simplifications were necessary in this model so that a reasonable solution time could be achieved while producing acceptable results. The model profile of the centre temperature closely followed that of the experimental results and thus the model was considered valid.

In addition, modifications were made to the original design of the pyrolyser in order to improve emissions compliance and improve operations of the pyrolysis. It was important to manage fugitive emissions and completely combust any volatile vapours that would be released into the atmosphere while controlling the operating parameters. In order to achieve this, the following were implemented:

1) The combustion chamber was sealed completely so that no fugitive emissions can escape while limiting the ingress of oxygen.
2) A secondary blower was installed in order to better control the oxygen supply to the burners.

3) The original steel lid, which warped during pyrolysis runs resulting in gaseous leaks, was replaced with a more rigid ceramic lid that doesn’t effectively expand when heated.

4) Two 3.4 kW burners were added to the single 3.4 kW burner flare. This gives a total power of 10.2 kW, which is estimated to be enough to completely burn all gaseous products leaving the system.
Acknowledgements

Firstly, I would like to express my gratitude to my supervisor Professor Jim Jones for offering me the opportunity to undertake this master’s project and also for his immense patience and understanding, helpful criticism, advice and engagement throughout the project.

Furthermore, I would like to thank my secondary supervisor Dr. Georg Ripberger for all the time and energy he has invested which helped in the successful completion of the project.

I would also like to thank Professor John Bronlund for his advice and guidance and also for allowing me the use of his COMSOL Multi-Physics license, for which without the project would not have been possible.

Lastly, I would like to acknowledge the following people for their help and support throughout the duration of the project; Dr. Gonzalo Martinez Hermosilla, Mr. John Edwards and Mr. Ian Thomas.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pre-exponential factor</td>
<td>s^{-1}</td>
<td>-</td>
</tr>
<tr>
<td>a</td>
<td>Gas volume fraction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A, B, C</td>
<td>Constants used for calculation of thermal conductivity</td>
<td>$W m^{-1} K^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>A_l</td>
<td>Liquid contact area of sample</td>
<td>m^2</td>
<td>-</td>
</tr>
<tr>
<td>A_w</td>
<td>Water adsorption Coefficient</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>Concentration</td>
<td>$mol m^{-3}$</td>
<td>-</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat</td>
<td>$J kg^{-1} K^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>C_{po}</td>
<td>Heat capacity of dry wood</td>
<td>$kJ kg^{-1} K^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>c_{sat}</td>
<td>Saturated volumetric moisture content</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>Diffusivity co-efficient</td>
<td>$m^2 s^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>ΔT</td>
<td>Temperature difference between the surface and hot gases ($T_{ext}-T$)</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>D_p</td>
<td>Particle diameter</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>D_w</td>
<td>Water diffusivity</td>
<td>$m^2 s^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>Activation Energy</td>
<td>$kJ mol^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>f_C</td>
<td>Fixed carbon content</td>
<td>wt. %</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>Specific gravity</td>
<td>-</td>
<td>1.54</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>$m s^{-2}$</td>
<td>9.81</td>
</tr>
<tr>
<td>G_b</td>
<td>Specific gravity</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
<td>$W m^{-2} s^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpy of reactions</td>
<td>$kJ kg^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>Identity matrix</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>Reaction rate</td>
<td>$mol m^{-3} s^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>Kinetic constant</td>
<td>s^{-1}</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>Permeability</td>
<td>m^2</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
<td>kg</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>Molecular weight</td>
<td>$kg mol^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
<td>wt. %</td>
<td>0-30%</td>
</tr>
<tr>
<td>MC_{fsp}</td>
<td>Moisture content at saturation</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>M_{fsp}</td>
<td>Fiber Saturation point</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M_i</td>
<td>Initial mass of sample</td>
<td>kg</td>
<td>-</td>
</tr>
<tr>
<td>M_t</td>
<td>mass of sample at time, t</td>
<td>kg</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>Pa, $kg m^{-1} s^{-2}$</td>
<td>101325</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl Number</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Q Heat generation W m$^{-3}$ -
q Heat flux W m$^{-2}$ -
Q$_{br}$ Mass generation (adsorption/desorption) kg m$^{-3}$ s$^{-1}$ -
R Ideal gas constant J mol$^{-1}$ K$^{-1}$ 8.314
Ra Rayleigh number - -
Re Reynold’s number - -
Sm Shrinkage of wood % -
So Shrinkage from wet wood to oven dry % -
T Temperature K -
u Darcy velocity m s$^{-1}$ -
U Averaged velocity m s$^{-1}$ -
v Rate of volatilisation mol m$^{-3}$ s$^{-1}$ -
VM Volatile Matter wt. % -
x Final moisture content of wood % -
y Product yield wt. % -
y$_{fc}$ Fixed carbon yield % -

Greek Letters

∇ Differential operator given in Cartesian co-ordinates -
Ω Coefficient of thermal expansion K$^{-1}$
α Thermal diffusivity m2 s$^{-1}$
ε emissivity -
η Reaction progress variable -
κ Thermal conductivity W m$^{-1}$ K$^{-1}$
μ Dynamic Viscosity Pa s
ρ Density kg m$^{-3}$
σ Stefan-Boltzmann constant 5.67x10$^{-8}$ W m$^{-2}$ K$^{-4}$
τ Turtuosity -
φ Porosity -

Subscript

b biomass
bed packed bed of wood chips
c char
conv convection
eff effective
ext external
fiber wood fiber
 g non-condensable gases
 G gas phase
 i species
 in inside
 L liquid phase
 lw liquid water
 max maximum
 min minimum
 o outside
 P particle
 rs surface-to-void radiation
 rv surface-to-surface radiation
 T tar
 vw water vapour
 w wood
Table of Contents

Preface ... i
Acknowledgements ... iii
Nomenclature ... iv
Figures .. viii
Tables .. x

1. Literature review ... 11
 1.1. Applications .. 11
 1.2. Physical and chemical characteristics of wood ... 12
 2.2.1. Physical properties .. 13
 2.2.2. Chemical properties ... 14
 2.2.3. Properties dependent on moisture content .. 15
 2.2.4. Thermal properties ... 16
 1.3. Pyrolysis ... 18
 1.3.1. Pyrolysis gases ... 18
 1.3.2. Char properties & yield ... 19
 1.3.3. Inorganic material (Ash) ... 22
 1.4. Previous pyrolysis modeling work ... 22
 1.4.1. Overview .. 22
 1.4.2. Drying of wet wood particles ... 24
 1.4.3. Pyrolysis chemical reaction kinetics ... 24
 1.4.4. Numerical methods ... 27

2. Reactor design & compliance ... 29
 2.1. Original flare system .. 30
 2.2. New flare design and operation ... 34
 2.3. Fugitive emissions ... 37
 2.3.1. Fire cement ... 40
 2.3.2. Ventilation holes in combustion chamber .. 41
 2.3.3. Ceramic/synthetic wool insulation .. 42

4. Mathematical description of wood pyrolysis ... 43
 4.1. Conceptual model .. 44
 4.2. Assumptions .. 49
 4.3. Pyrolysis kinetics .. 50
 4.3.1. Conservation of mass .. 52
4.3.2. Conservation of momentum .. 56
4.3.3. Conservation of energy ... 61
4.6. Material properties .. 67
 Permeability ... 68
 Thermal conductivity .. 69
 Specific heat ... 71
4.7. Summary ... 72
5. Model implementation in COMSOL Multi-Physics .. 73
6. Modeling results & discussion ... 78
 6.1. Comparison of theoretical model results with experimental results 78
 6.1.1. Biochar yield and quality .. 81
 6.1.2. Modification of Fantozzi Kinetics ... 84
 6.1.3. Sensitivity analysis of decomposition reaction properties 88
7. Conclusions and future research .. 90
8. References .. 92
9. Appendix .. 96
 9.1. Appendix A .. 96
 9.2. Appendix B .. 98
 9.3. Appendix C .. 100
 9.4. Appendix D .. 105

Figures
FIGURE 1-1: PHYSICAL STRUCTURE OF WOOD (WOODSTAIRS, 2012) 13
FIGURE 1-2: STRUCTURE OF CELLULOSE ... 14
FIGURE 1-3: KINETIC MODEL PROPOSED BY SHAFIGAZDEH AND CHIN IN (SHAFIGAZDEH AND CHIN, 1977) 23
FIGURE 1-4: SIMPLIFIED SCHEME FOR BIOMASS PYROLYSIS AS DERIVED FROM (DI BLASI, 1996) 27
THE WALL TEMPERATURE USED IN THE MODEL IS THE EXPERIMENTAL TEMPERATURE MEASURED AT THE BOTTOM OF THE STACK. THE EXPERIMENTAL DATA WAS COLLECTED AS DESCRIBED IN APPENDIX C. ...80
Figure 6-2: Centre temperature profile for different wall temperatures (400-700°C) 82
Figure 6-3: Re-produced graph of Run 3 from Bridges (Bridges, 2013) ... 85
Figure 6-4: Effect of exothermicity on temperature profile compared to Run 3 from Bridges work (Bridges, 2013). (2nd = Secondary, RXN = Reactions). Note the model-flue temperature is that of the bottom of the cylinder. There is a 200°C (Section 4) difference between the bottom and top, thus the flue temperature of the model is comparable to that of Rhonda’s experimentally determined flue temperature of ~500°C. ... 87
Figure 0-1: Carmen-Kozeny relationship for estimation of permeability of packed bed of porous material.. 97

Tables
Table 1-1: Elemental composition of carbonized char for various feed-stocks (Antal and Grønnli, 2003) .. 21
Table 2-1: Auto-ignition temperatures of the flammable gases found in the pyrolysis flue stream. Gas concentrations below the lower limit are too lean to ignite and gas concentrations in the upper limit are too rich (NIST Chemistry Webbook, 2016). 32
Table 2-2: Short-term New Zealand work place co exposure limits ... 33
Table 4.4-1: Constant values used in the model. Here H is the heat of reaction, A is the Arrhenius pre-exponential constant and E is the activation energy (e.g. solid phase = wood, char and gas phase = tar, gases, water vapour). .. 51
Table 4-2: Material properties used in this model .. 68
Table 6-1: Thermo-physical parameters used in the model ... 78
Table 6-6-2: Biochar yields predicted by the model for a range of peak treatment temperatures ... 81
Table 6-3: New kinetic reaction parameters used for the effect of decomposition reaction study .. 88
Table 6-4: Effects of kinetic parameters on biochar yield ... 89