Milk Production and Survival of Spring-calving Carryover Cows in New Zealand Dairy Herds

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science
in
Animal Science

at Massey University, Manawatu, New Zealand

Rachel Gardner
2017
Abstract

Non-pregnant cows are generally culled from dairy herds and replaced with two-year-old heifers. Alternatively, non-pregnant cows can be dried-off at the end of lactation, retained for one year (carried over), before being mated and returned to a milking herd in the following year. In this study, calving interval was used as a tool to identify and define the carryover cow population in spring-calving dairy herds. Linear modelling methods were used to compare carryover cow milk production with that of heifers, lactation-matched and age-matched non-carryover cows. Lastly, the survival for second-lactation carryover cows was compared with that of two-year-old heifers and lactation-matched non-carryover cows. Results showed that annually, 2.5% of spring-calving cows had returned to a milking herd after a carryover period in the previous year. Of those carryover cows, 43% returned to a milking herd at four years old, after failing to conceive in their first lactation. Most (69%) dairy herds contained less than 5% carryover cows and 17% of dairy herds comprised of zero carryover cows. The difference between the proportion of Holstein-Friesian in the carryover cow and non-carryover cow group was minimal (2%) but statistically greater (P<0.01) for the carryover cow group. Estimated breeding values (EBVs) for milk traits (milk yield, fat yield, protein yield and somatic cell count) were greater (P<0.01), but fertility EBVs were lower (P<0.01) for the carryover cow group in the year when they failed to conceive, compared to those for the non-carryover cow group. These were reflected in greater (P<0.01) selection indices (Breeding Worth and Production Worth) for carryover cows. After the carryover period, EBVs for milk traits and fertility decreased, and Breeding Worth was lower (P<0.01) for the carryover cow group, compared to the non-carryover cow group. Carryover cow milk yield, fat yield, protein yield and somatic cell score was greater (P<0.01) than those for heifers, lactation-matched and age-matched non-carryover cows in their first carryover year. This milk production advantage was maintained for up to three carryover years, if the carryover cow maintained an annual calving pattern, but at a decreasing rate. The probability of survival (days) was lower (P<0.01) for second-lactation carryover cows when compared to heifers and lactation-matched non-carryover cows. These findings are important for
the New Zealand dairy industry as they can aid on-farm culling (removal from the herd) decisions.
Acknowledgements

I would firstly like to thank Lorna McNaughton for developing the original carryover cow topic idea. The three months spent working on this topic as a summer internship student at Livestock Improvement Corporation (LIC) gave me a head start on my Masters. Over that summer period you warmly welcomed me as a part of the research and development group at LIC. The connections and friendships made during this time are invaluable. Your continued support, topic development ideas and feedback throughout my Master’s degree is greatly appreciated.

To my Massey supervisors, Penny Back and Nicolas Lopez-Villalobos, I am very thankful for the time you have spent supporting me and refining my project. Penny, you always provided an interesting off-topic story, followed by some superb suggestions in red pen to improve my thesis. Nicolas, I appreciate the time you spent teaching me how to use SAS, how to manage large datasets, and that linear modelling is not as scary as it looks. I am sure that the data analysis and writing skills you have both taught me will be beneficial for my future career.

Katie Eketone, I am grateful for your patience during the numerous hours spent communicating between Lorna and myself, and for completing the data extraction process. The project would have not been possible without your help.

Financial assistance from LIC’s Patrick Shannon scholarship, Massey University, Helen E Akers Postgraduate scholarship and C Alma Baker Trust is greatly appreciated. The study would not have been possible without this financial support.

To my friends and flatmates, thank you for always making time to support me, while having a blast throughout our time in Palmy. To my gypsy parents, you provided great holiday locations on the yacht and always reassured me that I can reach my goals I have set. And lastly, Hamish, thank you for providing continual support, for being a great weekend adventure buddy and for your acceptance of my strict 8am start time (it’s just about to get a whole lot earlier!). I look forward to the new adventures and challenges upon us.
Table of contents

Abstract ... i
Acknowledgements .. iii
Table of contents ... v
Table of figures ... ix
List of tables .. xi
List of Abbreviations .. xiii
Chapter 1 General Introduction ... 1
 1.1 Introduction .. 3
Chapter 2 Literature Review .. 7
 2.1 Introduction .. 9
 2.2 The New Zealand dairy industry ... 9
 2.3 Seasonal calving pattern ... 12
 2.4 Non-pregnant cow fates .. 13
 2.5 Carryover cow impact ... 15
 2.6 Dairy cow performance ... 17
 2.6.1 Breeding values and selection indices ... 17
 2.6.2 Milk production and milk quality ... 20
 2.6.2.1 Carryover cow milk production ... 21
 2.6.3 Reproduction and survival ... 23
 2.6.3.1 Reproductive performance measures .. 23
 2.6.3.2 Survival ... 25
 2.6.3.3 Reproductive performance and survival of carryover cows 27
 2.7 Factors affecting dairy cow performance ... 28
 2.7.1 Body condition score and energy balance ... 28
 2.7.1.1 Milk production .. 28
 2.7.1.2 Reproduction and fertility .. 29
 2.7.2 Breed and genetics ... 31
 2.7.3 Lactation number and age .. 33
 2.7.4 Animal health ... 34
 2.7.4.1 Mastitis .. 34
 2.7.4.2 Lameness .. 35
 2.7.4.3 Uterine and follicular health ... 36
 2.7.5 Farm management practices ... 36
2.7.5.1 Mating management ... 37
2.7.5.2 Planned start calving and dry-off dates .. 38

2.8 Conclusion ... 38
 2.8.1 Thesis objectives ... 39

Chapter 3 Carryover cow population ... 41
 3.1 Introduction ... 43
 3.2 Materials and Methods ... 43
 3.2.1 Data extraction ... 43
 3.2.2 Carryover cow definition .. 44
 3.2.3 Data editing .. 45
 3.2.3.1 Breed .. 45
 3.2.3.2 Spring-calving definition .. 45
 3.2.3.3 Extended non-lactating period 46
 3.2.3.4 Age and lactation number 46
 3.2.4 Statistical analysis ... 47
 3.2.4.1 The percentage of carryover cows by year, age and per herd .. 47
 3.2.4.2 The percentage of carryover cows in high and low performing herds . 48
 3.2.4.3 Proportion Holstein-Friesian, Jersey and coefficient heterosis for carryover
 and non-carryover cow groups 49
 3.2.4.4 Estimated breeding values and selection indices for carryover and non-
 carryover groups .. 50
 3.3 Results ... 51
 3.3.1 The percentage of carryover cows in spring-calving dairy herds 51
 3.3.2 Carryover over cow breed, estimated breeding values and selection indices ... 54
 3.3.2.1 Breed proportions .. 54
 3.3.2.2 Breeding values and selection indices 55
 3.4 Discussion .. 59

Chapter 4 Carryover cow milk production ... 66
 4.1 Introduction ... 68
 4.2 Materials and Methods ... 68
 4.2.1 Data ... 68
 4.2.1.1 Carryover cow milk production in year one 69
 4.2.1.2 Carryover cow milk production in first, second and third carryover year 70
 4.2.2 Statistical analysis ... 71
 4.2.2.1 Milk production model for carryover year one 71
Appendix D: Data exclusion process for Dataset 4a and 4b (section 5.2.1, 5.2.1.1 and 5.2.1.2)
.. 134
Table of figures

Figure 2.1 The percentage of Holstein-Friesian x Jersey, Holstein-Friesian, Jersey, Ayrshire, and other cows in the New Zealand dairy industry ... 10

Figure 2.2 The average kilograms of milksolids produced per cow and per effective hectare between the 1992 and 2015 season .. 11

Figure 2.3 The parturition, lactation, mating and pregnancy diagnosis events for carryover (CO) cows and non-carryover (NCO) cows. .. 14

Figure 2.4 The average reliability percentage and contribution of individual, ancestry, and progeny records to the Breeding Worth of heifers and cows up to their fifth lactation. ... 19

Figure 2.5 The common reproductive measurements used on New Zealand dairy farms 24

Figure 3.1 The distribution of calving interval (days) records in Dataset 1. Non-carryover lactation records have calving intervals between 270 days and 546 days. Carryover lactation records have calving intervals between 548 days and 913 days 52

Figure 3.2 The percentage of carryover cows in Holstein-Friesian, Jersey and Holstein-Friesian x Jersey herds that were in the upper quartile (UQ) and lower quartile (LQ) for milk production. ***Denotes a significant (P<0.01) difference between the UQ and LQ group .. 54

Figure 3.3 The Estimated Breeding Values for (a) milk yield, (b) fat yield, (c) protein yield, (d) somatic cell count (SCC), (e) fertility, as well as, the (f) Production Worth and (g) Breeding Worth for carryover (CO) cows that returned to a milking herd in lactation two (2013) and for their previous lactation (2011) and for non-carryover (NCO) cows in the same lactation and year .. 57

Figure 3.4 The Estimated Breeding Values for (a) milk yield, (b) fat yield, (c) protein yield, (d) somatic cell count (SCC), (e) fertility, as well as, the (f) Production Worth and (g) Breeding Worth for carryover (CO) cows that returned to a milking herd in lactation three (2013) and for their previous lactation (2011) and for non-carryover (NCO) cows in the same lactation and year .. 58

Figure 4.1 Second-lactation carryover cow (CO) milk production ((a) milk yield (L), b) fat yield (kg), c) protein yield, d) somatic cell score (SCS)) for carryover year one (1), two (2) and three (3), compared to non-carryover cows (NCO) of the same lactation. All comparisons between CO and NCO groups were significantly (P<0.01) different ... 75

Figure 4.2 Four-year-old carryover cow (CO) milk production ((a) milk yield (L), b) fat yield (kg), c) protein yield, d) somatic cell score (SCS)) for carryover year one (1), two (2) and three
(3), compared to non-carryover cows (NCO) of the same age. All comparisons between CO and NCO groups were significantly (P<0.01) different.

Figure 5.1 The distribution of survival (days) for carryover and non-carryover cows after their second parturition date (Day 0).

Figure 5.2 The probability of survival for carryover (CO) cows after their second parturition date (day 0) and non-carryover heifers (NCO – heifer) after their first parturition date (day 0).

Figure 5.3 The probability of survival for carryover (CO) and non-carryover (NCO) cows after their second parturition date (day 0).

Figure 5.4 The probability of survival for Holstein-Friesian, Jersey and Holstein-Friesian x Jersey cows after their second parturition date (day 0).

Figure 5.5 The probability of survival for cows that calved in July, August, September and October for their second parturition date.

Figure 5.6 The probability of survival for Holstein-Friesian, Jersey and Holstein-Friesian x Jersey carryover (CO) and non-carryover (NCO) cows after their second parturition date (day 0).

Figure 5.7 The probability of survival for July, August, September and October calving carryover (CO) and non-carryover (NCO) cows after their second parturition date (day 0).
List of tables

Table 2.1 The meaning, use and cow traits that contribute to Breeding Worth (BW), Production Worth (PW) and Lactation Worth (LW). .. 18

Table 2.2 The average daily milksolids (ADMS), expressed as kilograms of milksolids (kg MS), produced by carryover cows (CO) and mixed age (greater than three years old), three-year-old and two-year-old non-carryover (NCO) cows in early-, mid- and late-lactation... 22

Table 2.3 The annual milksolid (kg MS) production advantage for carryover cow groups versus non-carryover cow groups in first, second, third and fourth carryover year 22

Table 2.4 The average survival percentage of cows that are between two and nine years old for the past ten years .. 26

Table 2.5 The non-pregnant rate for carryover (CO) cow Group 1, CO Group 2, mixed-age non-carryover (NCO) cows, three-year-old NCO cows and two-year-old NCO cows 27

Table 2.6 The annual milk yield (MY), fat yield (FY), and protein yield (PY) produced by Holstein-Friesian, Jersey and Holstein-Friesian x Jersey dairy cows in New Zealand........... 31

Table 3.1 The average age at parturition (AP) (years) and age at parturition rounded (APR) (years) for lactation 1 to 12. .. 47

Table 3.2 The number of carryover (CO) cows and the number of non-carryover (NCO) cows for each breed category in Dataset 1. .. 48

Table 3.3 The milk production limits (milk yield (MY), fat yield (FY) and protein yield (PY)) used to categorise the upper quartile (UQ) and lower quartile (LQ) herds for milk production. 49

Table 3.4 The total number of breed records for carryover (CO) cows and non-carryover (NCO) cows that were used to determine the average proportion of Holstein-Friesian, Jersey and coefficient of heterosis. ... 50

Table 3.5 The number of lactation records for carryover cows (CO) that returned to a milking herd in lactation two and three (2013), and for their previous lactation (2011), as well as the number of non-carryover (NCO) comparisons. ... 51

Table 3.6 The total number of non-carryover (NCO) cows and carryover (CO) cows and the percentage of spring-calving carryover cows in Dataset 1 between 2008 and 2015........... 53

Table 3.7 The average proportion Holstein-Friesian, proportion Jersey and heterosis coefficient (Holstein-Friesian x Jersey) for carryover (CO) and non-carryover (NCO) groups............ 55

Table 4.1 The total number of carryover (CO) cow and non-carryover (NCO) cow lactation records that were analysed in the milk production comparison between heifers and second-lactation carryover cows, as well as all lactation-matched (two, three and four) and age-matched (four, five and six) carryover and non-carryover groups 70
Table 4.2 The least squares means for milk yield (MY), fat yield (FY), protein yield (PY) and somatic cell score (SCS) for carryover (CO) and non-carryover (NCO) cows that returned to a milking herd in their second, third and fourth lactation. ... 72

Table 4.3 The least squares means for milk yield (MY), fat yield (FY), protein yield (PY) and somatic cell score (SCS) for carryover (CO) and non-carryover (NCO) cows that returned to a milking herd when they were four, five and six years old. ... 73

Table 5.1 The percentage of second-lactation carryover (CO) cows and heifers (NCO heifer) cows that survived to a specific time (days) and the 95% confidence interval. 92

Table 5.2 The percentage of carryover (CO) and non-carryover (NCO) cows that survived to a specific time (days), after their second lactation, and the 95% confidence interval. 93

Table 5.3 The percentage of Holstein-Friesian, Jersey and Holstein-Friesian x Jersey cows that survived to a specific time (days) and the 95% confidence interval. 95

Table 5.4 The percentage of July, August, September and October calving cows that survived to a specific time (days) and the 95% confidence interval. ... 97

Table 5.5 The percentage of Holstein-Friesian, Jersey and Holstein-Friesian x Jersey carryover (CO) and non-carryover cows (NCO) that survived to a specific time (days) and the 95% confidence interval. ... 99

Table 5.6 The percentage of July, August, September and October calving carryover (CO) and non-carryover (NCO) cows that survived to a specific time (days) and the 95% confidence interval. ... 101
List of Abbreviations

BCS = Body condition score

BW = Breeding Worth

CIDR = Controlled internal drug release

CO = Carryover

EBV = Estimated Breeding Value

FY = Fat yield

LIC = Livestock Improvement Corporation

LW = Lactation Worth

MY = Milk yield

NCO = Non-carryover

NZAEL = New Zealand Animal Evaluation Limited

PW = Production Worth

PY = Protein yield

SAS = Statistical Analysis System

SCC = Somatic cell count

SCS = Somatic cell score