Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EFFECT OF INTERNAL AND EXTERNAL ROASTING TEMPERATURES ON PORK SENSORY PROPERTIES, PHYSICAL MEASUREMENTS AND CONSUMER LIKING

A thesis presented in fulfillment of the requirements for the degree of
Master of Technology (Food Technology)
at
Massey University
Palmerston North
New Zealand

Ravishankar Cumarasamy
2001
ABSTRACT

The objectives of this research were twofold. Initially it was to quantify the effects of external (roasting) temperature and meat internal (end-point) temperature on the sensory and physical characteristics of selected cuts of pork. Secondly, to investigate Australian consumer preferences to selected cut and cooking condition combinations, and determine the sensory attributes that are most important for preference formation. A two factor central composite rotatable design with independent variables external temperature (120°C-200°C) and internal temperature (65°C-100°C) was used in this trial. A trained sensory panel evaluated the sensory differences of selected cuts (C-loin chop; F-fillet; LE-leg; LO-loin, SH-shoulder, SC-scotch) of cooked pork. Using response surface analysis the effects of these cooking conditions on pork sensory properties (initial and sustained juiciness, pork flavour, hardness, cohesiveness, chewiness) and physical measurements (evaporation loss (%), drip loss (%), cooking time (min/kg), Instron shear force (N), Hunter colour L*, a*, b*) were studied. Sensory attributes initial juiciness (C, F, SC), sustained juiciness (C, F, LE, SC), pork flavour (C, F), hardness (LE, LO, SH), cohesiveness (LE, LO, SH, SC), and chewiness (LO) showed a significant linear relationship with internal temperature. Except for hardness (C) and pork flavour (C, F) all the other sensory attributes showed no significant linear relationships with external temperature. Relationships were also observed between physical measurements and relevant temperatures depending on the cut used. The second stage of consumer evaluation (degree of liking) of selected pork samples was done in Brisbane, Australia and internal preference mapping was used to correlate the trained panel data with consumer data. The results from preference mapping indicated tenderness (hardness) to be the most important sensory attribute driving consumer liking. This segment of Australian consumers primarily liked tender meat that was also flavourful and juicy. Tenderness of pork is achieved at lower internal temperatures for smaller cuts and at higher
internal temperatures for larger cuts. Increasing internal temperature also significantly increases cooking time. Therefore, the recommended internal temperatures for smaller cuts should be within the range 68-70°C and for larger cuts within the range of 80-85°C to optimise the sensory properties in accordance with the liking of this segment of Australian consumers.

The recommended external (ET) and internal (IT) temperatures from this research are:

- **Chop Roast**: ET 160°C-170°C, IT 68°C-70°C;
- **Fillet Roast**: ET 160°C-170°C, IT 68°C-70°C;
- **Leg Roast**: ET 180°C-190°C, IT 80°C-85°C;
- **Loin Roast**: ET 180°C-190°C, IT 80°C-85°C;
- **Shoulder Roast**: ET 180°C-190°C, IT 80°C-85°C;
- **Scotch Roast**: ET 160°C-170°C, IT 68°C-70°C.
Acknowledgments

The world of sensory science has always fascinated me. After completing my first degree in nutrition in 1989, further studies in any area was not an option. Living in a developing country meant that finding local institutions which offered courses in specialised areas such as sensory science was virtually impossible. Therefore it has taken me over a decade to fulfill my dream. This work has taken me from "ground zero" to the well established realms of sensory science. The experience I have gained has been well worth it. Not only has my knowledge increased, but I have been enabled to face new challenges and ride the waves of change with the correct attitude. I will always be greatful to my teachers, family and friends who helped me achieve this goal. I wish to take this opportunity to thank some of them by name.

I would often go adrift studying the various statistical methods used to analyse sensory data, and the different methodologies that are practiced in sensory evaluation. Managing both my studies and a full time job also meant difficulty in adhering to a strict schedule. Carol Pound, my supervisor, has always kept me on track which enabled me to complete this thesis. She provided constructive criticism and guidance over an extended period of time.

Lisa Duizer, also my supervisor, shared with me her wealth of knowledge and experience in sensory science. The time spent on numerous trips from Auckland to attend to my project, the telephone conversations and all the lengthy e-mails which stimulated my thinking have all contributed to my being able to produce this research.

I have greatly benefited from the statistical advice of Duncan Hedderley. His lessons in multivariate analysis of sensory data has introduced me to a "new dimension" in data analysis.
Andrew Saunders who was the manager of this project helped me in many ways. I should also mention FTRC staff Warwick, Chris, Fiona, Nathan and Paul who assisted me in running the experiment.

I further acknowledge my former colleagues at Universal College of Learning (School of Catering) for their input into the art of cooking and food presentation, my current employer New Zealand Crop & Food Research for financial support, and my current work colleagues-especially John Koolaard for his advice in statistics and the use of Genstat statistical software.

To the taste panelists for their time and diligent evaluation of pork and several others whose names I may have missed here: my sincere thanks to all of you.

My deep gratitude to my beloved parents, for providing me with good education, without which I would have not been qualified to attempt this thesis.

Last but not least, a special thanks to Dhakshi. Her inspiration, enthusiasm, suggestions, and encouragement during all the steps of assembling this thesis enabled me to complete it.
TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGMENTS .. III

TABLE OF CONTENTS .. V

LIST OF TABLES ... VIII

LIST OF FIGURES .. XI

CHAPTER 1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Scope .. 2

1.3 Aims .. 2

1.4 Objectives .. 3

CHAPTER 2. EATING QUALITY AND COOKING CONDITIONS OF PORK .. 4

2.1 Introduction ... 4

2.2 Eating Quality and pH .. 5

2.3 Eating Quality and Water Holding Capacity .. 5

2.4 Eating Quality and Intra Muscular Fat .. 6

2.5 The Effects of Cooking on Eating Quality .. 6

2.5.1 Meat Texture and Tenderness .. 7

2.5.2 Meat Juiciness .. 8

2.5.3 Meat Flavour .. 9

2.5.4 Meat Colour .. 10

2.6 Cooking Methods of Meat ... 10

2.6.1 Broiling, Braising and Roasting .. 13

2.6.1.1 Effects of Temperature on Sensory Properties of Pork .. 13

2.6.1.2 Effects of Cooking Conditions on Cooking Losses and Time .. 16

2.6.1.3 Effects of Cooking Method & Oven Type on Cooking Losses and Time 17

2.6.1.4 Effect of Chop Thickness on Pork Eating Quality and Acceptability 18

2.6.1.5 Effects of Cooking Conditions on Consumer Acceptability .. 18

2.6.2 Microwave Cooking .. 19

2.6.3 Frying of Pork ... 20

2.6.4 Cooking in a Bag .. 21

2.7 Conclusions .. 21
CHAPTER 4. CONSUMER PREFERENCE MAPPING OF ROASTED PORK CUTS

4.1 Introduction .. 89

4.2 Linking Consumer Data with Trained Panel Data ... 89
 4.2.1 Background .. 89
 4.2.2 Multidimensional Preference Mapping .. 90
 4.2.2.1. Internal Preference Mapping .. 92
 4.2.2.2 External Preference Mapping ... 93
 4.2.3 Broader Concerns ... 94

4.3 Materials and Methods ... 95
 4.3.1 Selection of Consumer Panel .. 95
 4.3.2 Sample Selection ... 96
 4.3.3 Meat Sample Preparation .. 98
 4.3.4 Consumer Evaluation ... 99
 4.3.5 Survey Questionnaire Design .. 100
 4.3.6 Data Analysis ... 100

4.4 Results & Discussion – Consumer Taste Panel ... 101
 4.4.1 Consumer Liking for Colour, Firmness, Juiciness, and Flavour 101
 4.4.2 Consumers’ Overall Liking .. 107
 4.4.2.1 Internal Preference Mapping .. 107
 4.4.2.2 Consumer Segmentation .. 114

4.5 Results & Discussion – Consumer Survey ... 115

4.6 Conclusions .. 117

4.7 Further Considerations & Limitations ... 119

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS ... 120

REFERENCES .. 124

APPENDICES .. 143
 Appendix 3.1 Product Attitude Survey Form ... 143
 Appendix 3.2 Pork Sensory Evaluation Training .. 145
 Appendix 3.3 Sample of the Sensory Evaluation Sheet ... 151
 Appendix 3.4 GPA Plots ... 152
 Appendix 3.5 Sensory and Physical Measurements of Chops 153
 Appendix 3.6 Sensory and Physical Measurements of Fillets 154
 Appendix 3.7 Sensory and Physical Measurements of Leg Roasts 155
 Appendix 3.8 Sensory and Physical Measurements of Loin Roasts 156
 Appendix 3.9 Sensory and Physical Measurements of Shoulder Roasts 157
 Appendix 3.10 Sensory and Physical Measurements of Scotch Roasts 158
 Appendix 4.1 Consumer Evaluation of Pork Samples ... 159
 Appendix 4.2 Consumer Survey Form .. 165
 Appendix 4.3 Consumer Segmentation Plots .. 171
 Appendix 4.4 Consumer Survey Data .. 173
LIST OF TABLES

TABLE 2.1 THE EFFECT OF COOKING CONDITIONS ON SENSORY PROPERTIES OF PORK ... 14

TABLE 2.2 THE EFFECT OF COOKING CONDITIONS ON SENSORY PROPERTIES OF PORK CONTINUED ... 15

TABLE 3.1 THE NAMES OF THE CUTS, REPLICATION AND AVERAGE FRESH WEIGHT .. 27

TABLE 3.2 DEFINITIONS OF THE ATTRIBUTES AND THEIR REFERENCES ... 30

TABLE 3.3 THE FORM OF DATA FOR REML .. 35

TABLE 3.4 THE FORM OF DATA FOR PCA PER CUT .. 38

TABLE 3.5 COOK CODE AND CORRESPONDING EXTERNAL AND INTERNAL TEMPERATURES ... 39

TABLE 3.6 Q. REGRESSION MODEL COEFFICIENTS FOR PORK CHOPS FOR SUBSTITUTION INTO EQUATION 1 ... 41

TABLE 3.7A CORRELATION OF SENSORY ATTRIBUTES OF CHOPS .. 45

TABLE 3.7B CORRELATION OF SENSORY ATTRIBUTES AND PHYSICAL MEASUREMENTS OF CHOPS .. 46

TABLE 3.8 Q. REGRESSION MODEL COEFFICIENTS FOR PORK FILLET FOR SUBSTITUTION INTO EQUATION 1 ... 49

TABLE 3.9A CORRELATION OF SENSORY ATTRIBUTES OF FILLETS .. 53

TABLE 3.9B CORRELATION OF SENSORY ATTRIBUTES AND PHYSICAL MEASUREMENTS OF FILLETS .. 54

TABLE 3.9C CORRELATION OF PHYSICAL MEASUREMENTS OF FILLETS .. 54

TABLE 3.10 Q. REGRESSION MODEL COEFFICIENTS FOR PORK LEG ROAST FOR SUBSTITUTION INTO EQUATION 1 ... 57

TABLE 3.11A CORRELATION OF SENSORY ATTRIBUTES OF LEG ROASTS .. 60

TABLE 3.11B CORRELATION OF SENSORY ATTRIBUTES AND PHYSICAL MEASUREMENTS OF LEG ROASTS .. 60
TABLE A3.7B AVERAGE SCORES OF PHYSICAL MEASUREMENTS FOR LEG ROASTS 155
TABLE A3.8A AVERAGE SCORES OF SENSORY ATTRIBUTES FOR LOIN ROASTS 156
TABLE A3.8B AVERAGE SCORES OF PHYSICAL MEASUREMENTS FOR LOIN ROASTS 156
TABLE A3.9A AVERAGE SCORES OF SENSORY ATTRIBUTES FOR SHOULDER ROASTS..... 157
TABLE A3.9B AVERAGE SCORES OF PHYSICAL MEASUREMENTS FOR SHOULDER ROASTS 157
TABLE A3.10A AVERAGE SCORES OF SENSORY ATTRIBUTES FOR SCOTCH ROASTS....... 158
TABLE A3.10B AVERAGE SCORES OF PHYSICAL MEASUREMENTS FOR SCOTCH ROASTS.... 158
LIST OF FIGURES

FIGURE 3.1 CENTRAL COMPOSITE DESIGN ... 26
FIGURE 3.2 RESPONSE SURFACE OF EVAPORATION LOSS (%) FOR CHOPS 41
FIGURE 3.3 RESPONSE SURFACE OF DRIP LOSS (%) FOR CHOPS 42
FIGURE 3.4 RESPONSE SURFACE OF COOKING TIME (MIN/KG) FOR CHOPS 42
FIGURE 3.5 RESPONSE SURFACE OF HUNTER COLOUR B* FOR CHOPS 43
FIGURE 3.6 PRINCIPAL COMPONENT ANALYSIS PLOT FOR CHOPS 44
FIGURE 3.7 RESPONSE SURFACE OF INITIAL JUICINESS FOR FILLETS 50
FIGURE 3.8 RESPONSE SURFACE OF SUSTAINED JUICINESS FOR FILLETS 51
FIGURE 3.9 RESPONSE SURFACE OF EVAPORATION LOSS (%) FOR FILLETS 51
FIGURE 3.10 RESPONSE SURFACE OF COOKING TIME FOR FILLETS 52
FIGURE 3.11 PRINCIPAL COMPONENT ANALYSIS PLOT FOR FILLETS 53
FIGURE 3.12 RESPONSE SURFACE OF HARDNESS FOR LEG ROASTS 57
FIGURE 3.13 RESPONSE SURFACE OF COOKING TIME FOR LEG ROASTS 58
FIGURE 3.14 PRINCIPAL COMPONENT ANALYSIS PLOT FOR LEG ROASTS 59
FIGURE 3.15 RESPONSE SURFACE OF HARDNESS FOR LOIN ROASTS 65
FIGURE 3.16 RESPONSE SURFACE OF CHEWINESS FOR LOIN ROASTS 66
FIGURE 3.17 RESPONSE SURFACE OF HUNTER COLOUR PARAMETER B* FOR LOIN ROASTS . 66
FIGURE 3.18 RESPONSE SURFACE OF INSTRON SHEAR FORCE FOR LOIN ROASTS 67
FIGURE 3.19 PRINCIPAL COMPONENT ANALYSIS PLOT FOR LOIN ROASTS 68
FIGURE 3.20 RESPONSE SURFACE OF COOKING TIME (MIN/KG) FOR SHOULDER ROASTS .. 74
FIGURE 3.21 PRINCIPAL COMPONENT ANALYSIS PLOT FOR SHOULDER ROASTS 75
FIGURE 4.7A. INTERPRETATION OF THE SAMPLE SPACE DEFINED IN FIGURE 4.6A, USING SENSORY DATA GENERATED BY THE TRAINED PANEL AND HUNTER COLOUR MEASUREMENTS (DIMENSIONS 1 AND 2) ...111

FIGURE 4.7B. INTERPRETATION OF THE SAMPLE SPACE DEFINED IN FIGURE 4.6B, USING SENSORY DATA GENERATED BY THE TRAINED PANEL AND HUNTER COLOUR MEASUREMENTS (DIMENSIONS 1 AND 3) ...111