Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHARACTERIZATION OF TWO GENES INVOLVED IN *NEOTYPHOIDIUM LOLII* GROWTH.

A thesis in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Palmerston North, New Zealand

Duncan George Glenn McMillan
2004
ABSTRACT

Neotyphodium lolii is a filamentous fungus that forms symbiotic associations with *Lolium perenne*, growing in its intercellular spaces. It is a feature of the symbiosis that growth of the fungus and the plant is synchronized. When the grass leaf-blade grows, the fungus grows at the same rate, hence when the blade ceases extension the hyphae do likewise. In addition, *in planta* there is little hyphal branching, whereas in culture hyphae branch at regular intervals. This suggests the existence of a regulatory mechanism *in planta* that partially dictates hyphal morphology and growth.

The criteria for choosing possible candidate genes relied on whether the gene had a function relating to hyphal branching and/or regulation of hyphal extension in several organisms. Three candidate genes were selected. Protein elongation factor 2 (*EF-2*; an elongation factor associated with the ribosome) was targeted to add more direct evidence to the high metabolic rate observed *in planta* using the GUS reporter gene by Tan *et al* (2001). Cell division control protein 12 (*CDC-12*); a septin which is involved in the construction of the 10 nm ring structure associated with cell division and whose mutation is lethal in yeast was chosen to help distinguish the growth mode of *N. lolii in planta*. A Stretch-activated Calcium Channel (*SACC*) which allows exogenous calcium into the cell upon application of lateral pressure on the membrane was targeted to help distinguish the possible recognition signal the hyphae make to elucidate when the host tissue is growing.

This project was then divided into four parts, one part per gene and a final part looking at the *in vitro* and *in vivo* expression of these genes. For the first three parts degenerate PCR was performed and appropriate-sized fragments cloned, sequenced and restriction mapped for *EF-2* and *CDC-12* (2066 bp and 514 bp respectively). Database searches were used to identify the sequences as potentially being the target genes. Degenerate PCR was unsuccessful for the *SACC*.
Southern blots were used to identify restriction enzymes for Inverse PCR; and this was used to obtain the remaining 5’ and 3’ regions of each target gene. Gene prediction software was used to predict gene structure; 5’ and 3’ RACE to confirm the length, introns and start/stop points of EF-2 and CDC-12 full gene transcripts (2,900 and 1,612 bp respectively). Internet-based sequence analysis tools subsequently were used to identify sequence features.

For the second part, expression of EF-2 and CDC-12 are investigated during various states of hyphal growth. Growth curves were constructed and in vitro expression analysis was achieved by Northern blot. The expression patterns of EF-2 and CDC-12 followed the growth state of N. lolii. RT PCR was used to confirm in planta expression of both genes and validate their uses for future studies.
ACKNOWLEDGEMENTS

I would like to convey my thanks to my supervisor, Jan Schmid for his patience and guidance in times of trial. I would also like to thank Ningxin Zhang for her help in the lab, without whose assistance I would have struggled to achieve results at all. Thank you both for taking time out of your busy schedules to help me with my project.

I would like to thank Mark Patchett, Mike Christensen and Errol Kwan for taking the time out to have all those philosophical chats with me about many aspects of research and ideas for further research. I have appreciated your friendship and advice. I would like to thank Rosie Bradshaw for acting as an interim supervisor and helping last-minute editing when she was very busy with other aspects of her work. I would like to acknowledge the members of Scott base, particularly Andrea Bryant, Michelle Bryant, Barry Scott and Carolyn Young for useful advice as well as everyone at IMBS for giving me tidbits of guidance throughout the years.

I would like to thank my family for their support and Kathryn Stowell for her understanding and advice for so many years. Thanks to the lads, I shall miss the chronic partying and science-free laughs. Lastly I would like to thank Mazzie who put up with my late-night swearing/writing episodes when I was under pressure, and who offered encouragement when I needed it.
TABLE OF CONTENTS

Chapter 1 INTRODUCTION

1.1 *Neotyphodium lolii* GROWTH AND HOST INTERACTIONS

 1.1.1 The *N. lolii* lifecycle
 1.1.2 Host compatibility
 1.1.3 Biological benefits of a symbiosis
 1.1.3.1 General Benefits
 1.1.3.2 Alkaloids and Bioprotection
 1.1.4 The phenomenon of *N. lolii* growth
 1.1.4.1 Hyphal growth dogma
 1.1.4.2 A synchronous growth pattern
 1.1.5 Molecular Investigation

1.2 *N. lolii* AND PROTEIN ELONGATION FACTOR 2

 1.2.1 EF-2 structure, regulation and modification
 1.2.2 Protein Synthesis and EF-2

1.3 *N. lolii* AND CELL DIVISION CONTROL PROTEIN 12

 1.3.1 CDC-12 structure
 1.3.2 CDC-12 function

1.4 *N. lolii* AND STRETCH-ACTIVATED CALCIUM CHANNELS

 1.4.1 SACC structure
 1.4.2 SACC function

1.5 AIMS OF THIS STUDY

Chapter 2 MATERIALS AND METHODS

2.1 MATERIALS

 2.1.1 Origin of Materials
 2.1.2 Organism Strains and Plasmids
 2.1.3 Water Supply and Sterilization
 2.1.4 Media
2.1.4.1 Bacterial media
 2.1.4.1.1 Luria Broth
 2.1.4.1.2 SOC
 2.1.4.1.3 SOB
2.1.4.2 Fungal media
 2.1.4.2.1 PD broth
 2.1.4.2.2 MYG

2.1.5 Buffers and Solutions
 2.1.5.1 Electrophoresis Buffers
 2.1.5.1.1 1 x TAE Buffer
 2.1.5.1.2 50 x TAE Buffer
 2.1.5.1.3 1 x TBE Buffer
 2.1.5.1.4 10 x TBE Buffer
 2.1.5.1.5 SDS Loading Buffer
 2.1.5.1.6 Ethidium Bromide
 2.1.5.2 DNA Isolation
 2.1.5.2.1 Lysis Buffer
 2.1.5.2.2 TE Buffer
 2.1.5.3 Southern Blotting Solutions
 2.1.5.3.1 Solution 1
 2.1.5.3.2 Solution 2
 2.1.5.3.3 Solution 3
 2.1.5.3.4 20 x SSC
 2.1.5.4 RNA Treatment
 2.1.5.4.1 DNase I
 2.1.5.4.2 10 x MOPS Buffer
 2.1.5.5 DIG Detection/Hybridization Solutions
 2.1.5.5.1 Blocking Solution
 2.1.5.5.2 Hybridization Solution
 2.1.5.5.3 DIG Buffer 1
 2.1.5.5.4 DIG Buffer 2
 2.1.5.5.5 Antibody Solution
2.1.5.5.6 DIG Buffer 3 28

2.2 METHODS

2.2.1 Growth of Cultures 28
 2.2.1.1 E. coli cultures 28
 2.2.1.2 N. lolii cultures
 2.2.1.2.1 Growth on Solid Media by Subculture 28
 2.2.1.2.2 Growth in Liquid Culture for DNA Isolation 28
 2.2.1.2.3 Growth Curves 1 29
 2.2.1.2.4 Growth Curves 2 29
 2.2.1.3 A. nidulans cultures
 2.2.1.3.1 Preparation of Spore Suspension 29
 2.2.1.3.2 Culture 30

2.2.2 DNA and Plasmid Isolation
 2.2.2.1 DNA Isolation from Fungal Cultures 30
 2.2.2.2 DNA Isolation from Infected Plant Tissue 30
 2.2.2.3 Large Scale Plasmid Isolation by Rapid Boil Method 31
 2.2.2.4 Small Scale Plasmid Isolation 31

2.2.3 Purification of DNA
 2.2.3.1 Phenol/Chloroform Extraction 31
 2.2.3.2 Ethanol Precipitation 32
 2.2.3.3 Agarose Gel Purification 32
 2.2.3.3.1 Purification of Small Fragments (0-1.5 kb) 32
 2.2.3.3.2 Purification of Large fragments (1.5 kb plus) 32
 2.2.3.4 Purification of DNA from a PCR Reaction 33

2.2.4 Nucleic Acid Quantification
 2.2.4.1 Determination of DNA Concentration by Fluorometric Assay 33
 2.2.4.2 Determination of RNA Concentration by Spectrophotometric Assay 33

2.2.5 Agarose Gel Electrophoresis 34

2.2.6 Restriction Endonuclease Digestion of DNA 34

2.2.7 Ligation of DNA
 2.2.7.1 Ligation into pGEM-T Easy vector 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.7.2</td>
<td>Intramolecular (Self) Ligation</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Degenerate and General Oligonucleotide Design</td>
</tr>
<tr>
<td>2.2.9</td>
<td>General and Degenerate PCR</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Sequencing</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Computer Analysis and Tools</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Cloning (Bacterial Transformation)</td>
</tr>
<tr>
<td>2.2.12.1</td>
<td>Preparation of Competent Cells</td>
</tr>
<tr>
<td>2.2.12.2</td>
<td>Transformation of E.coli</td>
</tr>
<tr>
<td>2.2.12.3</td>
<td>Diagnostic PCR Screening of Transformants</td>
</tr>
<tr>
<td>2.2.12.4</td>
<td>Storage of clones</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Southern Blotting and Hybridization</td>
</tr>
<tr>
<td>2.2.13.1</td>
<td>Southern Blotting</td>
</tr>
<tr>
<td>2.2.13.2</td>
<td>Preparation of Digoxigenin-11-dUTP (DIG) Labeled DNA Probe</td>
</tr>
<tr>
<td>2.2.13.3</td>
<td>Hybridization using DIG DNA Probes</td>
</tr>
<tr>
<td>2.2.13.4</td>
<td>Detection of Hybridization using Chemiluminescence</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Inverse PCR (IPCR)</td>
</tr>
<tr>
<td>2.2.15</td>
<td>RNA Technique Precautions</td>
</tr>
<tr>
<td>2.2.16</td>
<td>RNA Isolation</td>
</tr>
<tr>
<td>2.2.16.1</td>
<td>Total RNA Isolation</td>
</tr>
<tr>
<td>2.2.16.2</td>
<td>DNase Treatment of RNA</td>
</tr>
<tr>
<td>2.2.16.3</td>
<td>mRNA Isolation</td>
</tr>
<tr>
<td>2.2.17</td>
<td>Northern Blotting and Hybridization</td>
</tr>
<tr>
<td>2.2.17.1</td>
<td>Formaldehyde Gel Electrophoresis</td>
</tr>
<tr>
<td>2.2.17.2</td>
<td>Northern Blotting</td>
</tr>
<tr>
<td>2.2.17.3</td>
<td>Probe Stripping</td>
</tr>
<tr>
<td>2.2.18</td>
<td>RT PCR Techniques</td>
</tr>
<tr>
<td>2.2.18.1</td>
<td>RT PCR for In planta Analysis</td>
</tr>
<tr>
<td>2.2.18.1.1</td>
<td>Reverse Transcriptase Synthesis of cDNA</td>
</tr>
<tr>
<td>2.2.18.1.2</td>
<td>PCR probing of cDNA</td>
</tr>
<tr>
<td>2.2.18.2</td>
<td>RACE</td>
</tr>
<tr>
<td>2.2.18.2.1</td>
<td>Synthesis of RACE-Ready cDNA</td>
</tr>
</tbody>
</table>
Chapter 3 EF-2 Cloning

3.1 MOLECULAR CLONING OF A PROTEIN ELONGATION FACTOR 2 GENE FROM N. LOLII (Lp19)

3.1.1 Degenerate Primer Design
3.1.2 PCR amplification of a putative Lp19 EF-2 (nlEF-2) gene fragment
3.1.3 Cloning and sequencing of the putative nlEF-2 fragment
3.1.4 Initial verification of the identity of the putative nlEF-2 fragment
3.1.5 Obtaining the nlEF-2 2066 bp flanking regions
 3.1.5.1 Enzyme Identification; Southern Blotting
 3.1.5.2 Inverse PCR (IPCR)

3.2 5' AND 3' RACE FOR nlEF-2

3.3 ANALYSIS AND DISCUSSION OF SEQUENCE RESULTS

3.3.1 N. lolii (Lp19) Protein Elongation Factor 2 (nlEF-2)
3.3.2 Intron Sites
3.3.3 Identification Of Transcription Start/Stop Sites
3.3.4 Analysis of the nlEF-2 gene promoter region
3.3.5 Analysis of sequences resulting from nlEF-2 gene
 3.3.5.1 Identification of Putative Translation Start/Stop Sites
 3.3.5.2 nlEF-2 putative amino acid sequence: homology to elongation factor 2
 3.3.5.3 Codon Usage of nlEF-2

Chapter 4 CDC-12 CLONING RESULTS

4.1 MOLECULAR CLONING OF A CELL CYCLE DIVISION PROTEIN 12 GENE FROM N. LOLII (Lp19)

4.1.1 Degenerate Primer Design
4.1.2 PCR amplification of a putative Lp19 CDC-12 (nlCDC-12) gene fragment
4.1.3 Cloning and sequencing of the putative nlCDC-12 fragment
4.1.4 Initial verification of the identity of the putative nlCDC-12 fragment
4.1.5 Obtaining the nlCDC-12 514 bp flanking regions
Chapter 5 SACC CLONING
5.1 ATTEMPTED CLONING OF A STRETCH-ACTIVATED CALCIUM CHANNEL GENE FROM N. LOLII (Lp19)
 5.1.1 Degenerate Primer Design 132
 5.1.2 Attempted PCR amplification of a putative N. lolii SACC gene fragment 132
 5.1.3 Attempted Detection of a N. lolii SACC using an A. nidulans probe on Southern Blot 133

Chapter 6 EF-2 AND CDC-12 EXPRESSION RESULTS
6.1 Expression of nlEF-2 and nlCDC-12 in culture 136
6.2 Expression of nlEF-2 and nlCDC-12 in planta 141

Chapter 7 DISCUSSION AND FUTURE DIRECTIONS
7.1 SUMMARY OF nlEF-2 AND nlCDC-12 GENERAL FEATURES 145
7.2 SUMMARY OF nlEF-2 SPECIFIC FEATURES
 7.2.1 Promoter elements 145
 7.2.2 Putative protein elements 146
7.3 nlEF-2 EXPRESSION AND FUTURE DIRECTIONS 147
7.4 SUMMARY OF \textit{nlCDC-12} SPECIFIC FEATURES

7.4.1 Promoter elements
7.4.2 Putative protein elements

7.5 \textit{nlCDC-12} EXPRESSION AND FUTURE DIRECTIONS

7.6 SACC FUTURE DIRECTIONS

APPENDICES

See Figures and Tables for content

REFERENCES
FIGURES

CHAPTER 1
1.1 N. lolii in planta 6
1.2 Protein Elongation in Fungi 12
1.3 Molecular Model of SACC opening 20

CHAPTER 3
3.1 EF-2 Degenerate primer design 51
3.2 PCR amplification of putative EF-2 gene fragments 53
3.3 Southern Analysis for nlEF-2 Inverse PCR 59
3.4 A Theoretical construction of a Complete nlEF-2 gene from 2066 bp PCR product and the expected Inverse PCR product. 62
3.5 First Attempt of IPCR amplification of putative nlEF-2 gene fragments 65
3.6 Identity verification of IPCR products 68
3.7 Second Attempt of IPCR amplification of putative EF-2 gene fragments 71
3.8 Schematic of Mapped EF2-con2 (Linear A) and Circular B) 74
3.9 nlEF-2 5' RACE 79
3.10 nlEF-2 3' RACE 79
3.11 Full Nucleotide sequence of EF2-con2 83
3.12 Schematic comparison of EF-2 gene structure 90
3.13 Alignment Comparing nlEF-2p and Fungal EF-2 Protein Sequences 95

CHAPTER 4
4.1 CDC-12 Degenerate primer design 101
4.2 PCR amplification of putative nlCDC-12 gene fragments 103
4.3 Southern Analysis for nlCDC-12 Inverse PCR 107
4.4 A Theoretical construction of a complete nlCDC-12 gene from 514 bp PCR product and the expected Inverse PCR product. 110
4.5 IPCR amplification of putative nCDC-12 gene fragments 112
4.6 nlCDC-12 5' RACE 117
4.7 nlCDC-12 3' RACE 117
4.8 Full Nucleotide sequence of Sep-con1 121
4.9 Schematic comparison of nlCDC-12 gene structure 125
4.10 Alignment Comparing nlCDC-12p and Fungal CDC-12 Protein Sequences 130

CHAPTER 5
5.1 Partial alignment of proteins used to design SACC degenerate PCR primers 134

CHAPTER 6
6.1 Lp19 Growth Curve 137
6.2 Northern Analysis of nlEF-2 and nlCDC-12 Expression 139
6.3 In planta Analysis of nlEF-2 and nlCDC 12 Expression 143

APPENDIX
A.1.1 Host grass 162
A.2.1 pGEM-T Easy vector map 163
A.2.2 IPCR Strategies schematic 164
A.3.1 Endonuclease non-cutters 167
A.3.2 Schematic assembly of EF2-con1 and –con2 170
A.3.3 nlEF-2 characterization alignment 174
A.3.4 nlCDC-12 characterization alignment 180
TABLES

CHAPTER 2
2.1 Strains and Plasmids 24
2.2 PCR and Sequencing Primers 39

CHAPTER 3
3.1 Intron sites for nlEF-2 77

CHAPTER 4
4.1 Intron sites for nlCDC-12 115

APPENDIX
A1.1 Genes involved in hyphal morphogenesis 151
A.2.1 PCR protocols 165
A.2.2 Example transformation results 166
A.3.1 Intron and Exon lengths and locations 167
A.3.2 nlEF-2 and nlCDC-12 codon usage 171
A.3.3 Dry weights of Northern samples 173
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Adenosine 5'-triphosphate</td>
<td>h</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanine 5'-triphosphate</td>
<td>mm</td>
</tr>
<tr>
<td>dNTP</td>
<td>Nucleotide 5'-triphosphate</td>
<td>cm</td>
</tr>
<tr>
<td>CDC</td>
<td>Cell cycle division protein</td>
<td>U</td>
</tr>
<tr>
<td>EF</td>
<td>Protein Elongation factor</td>
<td></td>
</tr>
<tr>
<td>SACC</td>
<td>Stretch-activated calcium channel</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
<td></td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
<td></td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
<td></td>
</tr>
<tr>
<td>Gd³⁺</td>
<td>Galadeninium ion</td>
<td></td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
<td></td>
</tr>
<tr>
<td>kb</td>
<td>Nucleotides (Kilobases)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Nucleotide (base)</td>
<td></td>
</tr>
<tr>
<td>MOPS</td>
<td>3-N-Morpholinepropanesulfonic acid</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Degrees centigrade</td>
<td></td>
</tr>
<tr>
<td>µL</td>
<td>Micro-liter</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>Milli-liter</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
<td></td>
</tr>
<tr>
<td>pM</td>
<td>Pico-mole</td>
<td></td>
</tr>
<tr>
<td>µM</td>
<td>Micro-mole</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Milli-mole</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Mole</td>
<td></td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
<td></td>
</tr>
</tbody>
</table>