Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECT OF BIOPOLYMER ADDITION ON THE PROPERTIES OF RENNET-INDUCED SKIM MILK GELS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Palmerston North, New Zealand

Yi Ling Tan

2003
Abstract

The main objectives of this study were to determine the effect of adding different biopolymers (κ-Carrageenan, xanthan gum, guar gum, high-methoxyl pectin and gelatin) on the properties of rennet skim milk gels. A collection of techniques, namely strain-controlled rheometry, spontaneous whey separation measurements, confocal laser scanning microscopy and diffusing wave spectroscopy, were used.

The effects of these biopolymers were investigated for rennet skim milk gels made under model system and cheesemaking conditions. However, only rheological measurements were performed for samples made under cheesemaking conditions.

For samples made under model system conditions, the concentration of the biopolymer was varied from 0 wt% to 0.1 wt%. Experimental conditions, such as renneting temperature (30°C), total milk-solids (10 wt% reconstituted skim milk), pH 6.7 and rennet concentration (200 µL per 100 g sample) were kept constant.

The rheological behaviour of these samples was affected by the addition of κ-carrageenan, xanthan, guar, high-methoxyl (HM) pectin and gelatin. Both rheology and diffusing-wave spectroscopy (DWS) showed that the aggregation and gelation time and the gel strength was affected by the addition of these biopolymers. It was also shown that the syneresis behaviour, as well as the microstructure of rennet gels as imaged by confocal laser scanning microscopy (CLSM), was altered upon adding these biopolymers.

The rheological and microstructural properties of model renneted skim milk systems improved by adding small amounts (0.025 wt%) of κ-carrageenan, guar, HM pectin and gelatin, but not xanthan. Renneted skim milk containing HM pectin and gelatin had higher G^*, decreased aggregation time and gelation time and lower syneresis values as the concentration of biopolymer was increased.
On the other hand, lower G^* and higher syneresis values were obtained for samples containing higher concentrations (> 0.025 wt%) of κ-carrageenan, xanthan and guar gum. Higher syneresis index was a consequence of the presence of larger pores in these samples, as shown from the CLSM micrographs.

The effects caused by the addition of κ-carrageenan, xanthan and guar gum were believed to be due to phase separation in rennet skim milk gels containing polysaccharide, and was explained in term of a depletion-flocculation mechanism.

For rennet gels made under cheesemaking conditions (pH 6.2 with addition of 0.68 mM CaCl$_2$), it was found that the addition of xanthan, guar, HM pectin and gelatin had similar effect to that when added to samples made under model system conditions. This was due to the fact that the differences in pH and salt were known to not affect the properties of the biopolymers. However, the addition of κ-carrageenan, which was very sensitive to ions such as calcium, improved the viscoelastic properties of rennet skim milk gels made under cheesemaking conditions.

Overall, this work provides useful information on the effects of adding κ-carrageenan, xanthan, guar, high-methoxyl pectin and gelatin on the properties of rennet-induced gels.
Acknowledgments

Sincere thanks to my supervisor Yacine Hemar for the many hours of stimulating discussion, helpful advice and continuous encouragement throughout the length of this project. I am also thankful to Harjinder Singh for his valuable suggestions and guidance.

Special thanks to Michelle Tamehana, Elizabeth Nickless, Allan Hardacre and Suzanne Clark for their technical advice and assistance.

My thanks are also due to Chung Lam Yap, Elisa dos Santos, Gary Field-Mitchell, Jack Cui, Kelvin Goh, Maya Sugiarto, Peter Zhu, Richard Croy, Ulrike Boecker and all my other fellow graduates, researchers for their friendship and help throughout this course.

Finally, I would like to express my heartfelt gratitude towards my parents, who provided me with a conducive environment and have been a constant source of inspiration always.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents ... iv
List of Figures ... ix
List of Tables .. xiii

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE REVIEW 4

2.1 MILK
2.1.1 Milk Proteins

2.2 MILK GELS: FORMATION, STRUCTURE AND PROPERTIES 5
2.2.1 Casein Micelle
2.2.2 Renneting: Enzymatic Coagulation of Milk
2.2.3 Gel Formation: Rennet-induced milk gel
2.2.4 Gel Structure and Properties
2.2.5 Factors affecting gel formation, structure and properties of renneted skim milk

2.3 FOOD POLYSACCHARIDES 17
2.3.1 Carrageenan
2.3.2 Xanthan gum
2.3.3 Guar gum
2.3.4 Pectin

2.4 GELATIN 22

2.5 MILK PROTEIN – POLYSACCHARIDES INTERACTIONS 24
2.5.1 The Mixing Behaviours of Biopolymer Solutions
2.5.2 Casein micelles and Polysaccharides Interaction
2.5.3 Milk Proteins and Polysaccharides Interaction
2.5.4 Renneted Casein Micelles/Polysaccharides Systems

CHAPTER 3: MATERIALS AND METHODS

3.1 MATERIALS
3.1.1 Low Heat Skim Milk Powder
3.1.2 Polysaccharides
3.1.3 Gelatin
3.1.4 Rennet
3.1.5 Chemical Reagents

3.2 SAMPLE PREPARATION
3.2.1 Reconstitution of Skim Milk Powder
3.2.2 Dilution of ADS Rennet
3.2.3 Preparation of 1 wt% Polysaccharide and Gelatin Stock Solution
3.2.4 Sample Preparation

3.3 EXPERIMENTAL METHODS
3.3.1 Rheology
3.3.2 Syneresis
3.3.3 Confocal Laser Scanning Microscopy (CLSM)
3.3.4 Diffusing Wave Spectroscopy (DWS)

CHAPTER 4: EFFECT OF BIOPOLYMERS ADDITION ON THE RHEOLOGICAL PROPERTIES OF RENNET-INDUCED SKIM MILK GELS

4.1 DATA ANALYSIS
4.2 RESULTS
4.2.1 Kappa-carrageenan
4.2.2 Xanthan gum
4.2.3 Guar gum
4.2.4 High-methoxyl (HM) Pectin
4.2.5 Gelatin

4.3 COMPARISON BETWEEN THE RENNETED SAMPLES
4.4 SUMMARY
CHAPTER 5: EFFECT OF BIOPOLYMERS ADDITION ON THE
SYNERESIS AND CONFOCAL LASER SCANNING
MICROSCOPY (CLSM) OF RENNET-INDUCED SKIM MILK GELS

5.1 Whey separation (syneresis) 57
5.2 Microstructure 60
 5.2.1 κ-Carrageenan 60
 5.2.2 Xanthan gum 62
 5.2.3 Guar gum 62
 5.2.4 HM Pectin 65
 5.2.5 Gelatin 65
5.3 Relationship between syneresis measurements and CLSM observations 68
5.4 Summary 69

CHAPTER 6: INFLUENCE OF BIOPOLYMERS ADDITION ON
RENNET-INDUCED GELATION OF SKIM MILK AS
MONITORED BY DIFFUSING WAVE SPECTROSCOPY (DWS) 70

6.1 Data analysis 70
6.2 Results 72
 6.2.1 Aggregation time 72
 6.2.2 Gelation times 72
 6.2.3 Gel strength 74
6.3 Comparison between DWS and rheology 76
6.4 Summary 79
CHAPTER 7: EFFECT OF BIOPOLYMERS ADDITION ON THE RHEOLOGICAL PROPERTIES OF RENNET-INDUCED SKIM MILK GELS MADE UNDER COMMERCIAL CHEESEMAKING CONDITIONS

7.1 METHODS 80
7.2 RESULTS 82
 7.2.1 K-Carrageenan 82
 7.2.2 Xanthan gum 82
 7.2.3 Guar gum 84
 7.2.4 HM Pectin 87
 7.2.5 Gelatin 87
7.3 COMPARISON BETWEEN DIFFERENT POLYSACCHARIDES 90
 7.3.1 Gelation times 90
 7.3.2 Gel strength 91
7.4 SUMMARY 94

CHAPTER 8: GENERAL DISCUSSION 95
8.1 MODEL SYSTEMS (RENNETED SKIM MILK POLYSACCHARIDES) 95
 8.1.1 K-Carrageenan 95
 8.1.2 Xanthan gum 96
 8.1.3 Guar gum 96
 8.1.4 HM Pectin 97
 8.1.5 Gelatin 98
8.2 CHEESEMAKING CONDITIONS 98
 8.2.1 Summary 100

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 101
9.1 RECOMMENDATIONS 103
ANNEX 1 - PERMEABILITY

1-1 Methods
1-2 Discussion

ANNEX 2- PROPERTIES OF RENNET-INDUCED SKIM MILK (CONTROL)

2-1 Effect of reconstituted skim milk preparation method
2-2 Effect of pH, salt addition and rennet concentrations

ANNEX 3 - pH OF MODEL RENNETED SKIM MILK/POLYSACCHARIDE SYSTEMS
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>DISTRIBUTION OF FRACTIONS AND PROTEINS IN BOVINE MILK</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>DUAL BONDING MODEL OF STRUCTURE OF CASEIN MICELLE.</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>SCHEMATIC DIAGRAM OF THE ATTACK BY CHYMOSIN ON CASEIN MICELLES</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>THE EFFECT OF TIME AFTER ADDING RENNET, TEMPERATURE, pH, ADDED</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CaCl₂ AND EXTENT OF CONCENTRATING MILK BY ULTRAFILTRATION ON THE RATE</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>OF RENNET ENZYME REACTION (VF, %), THE RATE OF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLOCCULATION OF MICELLES (VF, %), THE DYNAMIC STORAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODULUS OF THE GEL (G', Pa), THE LOSS TANGENT CHARACTERIZING THE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEL (tan δ), THE PERMEABILITY COEFFICIENT (B, m²), THE ENDODGEOUS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYNERESIS PRESSURE (P, Pa) AND THE INITIAL SYNERESIS RATE (S)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>MAIN TRENDS IN THE BEHAVIOUR OF PROTEIN POLYSACCHARIDE MIXTURES</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>NON-ABSORBING, NON-GELING POLYMER IN COLLOIDAL DISPERSIONS</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>ADSORBING, NON-GELING POLYMER IN COLLOIDAL DISPERSION</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>GELLING POLYMER IN COLLOIDAL DISPERSIONS</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>DELETION INTERACTION BETWEEN TWO COLLOIDAL PARTICLES INDUCTED BY A</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>DISSOLVED POLYMER (P)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>EXPERIMENTAL SET-UP OF THE DIFFUSING WAVE SPECTROSCOPY (DWS)</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>TYPICAL GRAPH OF A RHEOLOGICAL DYNAMIC TIME SWEEP</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>COMPLEX MODULUS (G*) OF RENNETED SKIM MILK WITH 0 WT%.</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>0.025 wt%, 0.05 wt%, 0.075 wt% AND 0.1 wt% K-CARRAGEENAN AS A FUNCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OF RENNETING TIME AT 30°C.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>STORAGE (G') AND LOSS (G'') MODULUS OF RENNETED SKIM MILK WITH 0 WT%</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>0.025 wt%, 0.05 wt%, 0.075 wt%, 0.1 wt% K-CARRAGEENAN AS A FUNCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OF FREQUENCY</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Complex modulus (G') of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% xanthan as a function of renneting time at 30°C

4.5 Storage (G') and loss (G'') modulus of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% xanthan as a function of frequency

4.6 Complex modulus (G') of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% guar as a function of renneting time at 30°C

4.7 Storage (G') and loss (G'') modulus of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% guar as a function of frequency

4.8 Complex modulus (G') of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% HM pectin as a function of renneting time at 30°C

4.9 Storage (G') and loss (G'') modulus of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% HM pectin as a function of frequency

4.10 Complex modulus (G') of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% gelatin as a function of renneting time at 30°C

4.11 Storage (G') and loss (G'') modulus of renneted skim milk with 0 wt%, 0.025 wt%, 0.05 wt%, 0.075 wt% and 0.1 wt% gelatin as a function of frequency

4.12 Complex modulus (G') as a function of renneting time of renneted skim milk containing k-carrageenan, xanthan, guar, HM pectin and gelatin

4.13 Aggregation times (A) and gelation times (B), obtained from dynamic time sweep test, of renneted skim milk containing k-carrageenan, xanthan gum, guar gum, HM pectin and gelatin
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Complex modulus (G^*) at 1.39 Hz, obtained from frequency sweep test, of renneted skim milk containing κ-carrageenan, xanthan gum, guar gum, HM pectin and gelatin</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of adding κ-carrageenan, xanthan gum, guar gum, HM pectin and gelatin on the whey separation behaviour of rennet-induced skim milk gels.</td>
</tr>
<tr>
<td>5.2</td>
<td>Confocal micrographs of rennet skim milk gels containing κ-carrageenan</td>
</tr>
<tr>
<td>5.3</td>
<td>Confocal micrographs of rennet skim milk gels containing xanthan gum</td>
</tr>
<tr>
<td>5.4</td>
<td>Confocal micrographs of rennet skim milk gels containing guar gum</td>
</tr>
<tr>
<td>5.5</td>
<td>Confocal micrographs of renneted skim milk gels containing HM pectin</td>
</tr>
<tr>
<td>5.6</td>
<td>Confocal micrographs of rennet skim milk gels containing gelatin</td>
</tr>
<tr>
<td>6.1</td>
<td>Typical graph of diffusing wave spectroscopy of renneted control sample</td>
</tr>
<tr>
<td>6.2</td>
<td>Aggregation (Graph A) and gelation (Graph B) times of renneted skim milk containing κ-carrageenan, xanthan gum, guar gum, HM pectin and gelatin obtained by DWS</td>
</tr>
<tr>
<td>6.3</td>
<td>“Gel strength”, obtained from DWS measurements, of rennet skim milk gels containing κ-carrageenan, xanthan gum, guar gum, HM pectin and gelatin</td>
</tr>
<tr>
<td>7.1</td>
<td>Complex modulus (G^*) of renneted skim milk with 0 wt%, 0.01 wt%, 0.025 wt% and 0.05 wt% κ-carrageenan as a function of renneting time at 32°C</td>
</tr>
<tr>
<td>7.2</td>
<td>Storage (G') and loss (G'') modulus of renneted skim milk with 0 wt%, 0.010 wt%, 0.025 wt% and 0.05 wt% κ-carrageenan as a function of frequency</td>
</tr>
<tr>
<td>7.3</td>
<td>Complex modulus (G^*) of renneted skim milk with 0 wt%, 0.005 wt%, 0.010 wt%, 0.025 wt% and 0.05 wt% xanthan as a function of renneting time at 32°C</td>
</tr>
</tbody>
</table>

55 59 61 63 64 66 67 71 73 75 83 83 85
7.4 Storage (G') and Loss (G'') Modulus of Renneted Skim Milk
with 0 wt%, 0.005 wt%, 0.0010 wt%, 0.025 wt% and 0.05 wt%
Xanthan as a Function of Frequency 85

7.5 Complex Modulus (G') of Renneted Skim Milk with 0 wt%,
0.010 wt%, 0.025 wt% and 0.05 wt% Guar
as a Function of Renneting Time at 32°C 86

7.6 Storage (G') and Loss (G'') Modulus of Renneted Skim Milk
with 0 wt%, 0.010 wt%, 0.025 wt% and 0.05 wt% Guar
as a Function of Frequency 86

7.7 Complex Modulus (G') of Renneted Skim Milk with 0 wt%,
0.010 wt%, 0.025 wt% and 0.05 wt% HM Pectin
as a Function of Renneting Time at 32°C 88

7.8 Storage (G') and Loss (G'') Modulus of Renneted Skim Milk with
0 wt%, 0.010 wt%, 0.025 wt% and 0.05 wt% HM Pectin
as a Function of Frequency 88

7.9 Complex Modulus (G') of Renneted Skim Milk with 0 wt%,
0.010 wt%, 0.025 wt% and 0.05 wt% Gelatin
as a Function of Renneting Time at 32°C 89

7.10 Storage (G') and Loss (G'') Modulus of Renneted Skim Milk
with 0 wt%, 0.010 wt%, 0.025 wt% and 0.05 wt% Gelatin
as a Function of Frequency 89

7.11 Gelation Times of Renneted Skim Milk Containing K-Carrageenan,
Xanthan Gum, Guar Gum, HM Pectin and Gelatin Under Normal
Experimental Conditions at 0 wt%, 0.025wt%, 0.050wt%,
0.075 wt% and 0.1 wt% Concentrations, and Under Cheesemaking
Conditions at 0 wt%, 0.010 wt%, 0.025 wt% and 0.050 wt%
Concentrations, Respectively 92

7.12 "Gel Strength" as a Function of Biopolymer Concentrations of
Renneted Skim Milk Containing K-Carrageenan,
Xanthan Gum, Guar Gum, HM Pectin and Gelatin. Graph (A)
Represented Model System Samples and Graph (B) Represented
Samples Under Cheesemaking Conditions 93

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>PROPERTIES OF κ-CARRAGEenan</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>PROPERTIES OF XANTHAN GUM</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>PROPERTIES OF GUAR GUM</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>PROPERTIES OF HIGH METHOXYL (HM) PECTIN</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>PROPERTIES OF GELATIN</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>PRODUCT INFORMATION ON LOW-HEAT SKIM MILK POWDER (SMP)</td>
<td>33</td>
</tr>
<tr>
<td>6.1</td>
<td>COMPARISON OF AGGREGATION AND GELATION TIMES OBTAINED BY DWS AND RHEOLOGICAL MEASUREMENTS</td>
<td>78</td>
</tr>
<tr>
<td>7.1</td>
<td>NORMAL EXPERIMENTAL AND CHEESEMAKING CONDITIONS USED IN THE FORMATION OF RENNET-INDUCED SKIM MILK GELS</td>
<td>81</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Background

Despite the introduction and development of numerous new food products, milk and dairy products continue to play an important role in the nutrition of people in all parts of the world. Milk is a perishable food because of its high water content and an almost neutral pH. Like any other perishable foods, unless it is destined for immediate consumption, it needs to be processed into various products such as milk powders and cheese.

Traditionally, cheese was made as a way of preserving the nutrients of milk. Defined simply, cheese is the fresh or ripened product obtained after coagulation and whey separation of milk, cream or partly skimmed milk, buttermilk or a mixture of these products. Cheese is obtained by the addition of rennet to milk, which causes the milk proteins to aggregate and ultimately transform fluid milk to a semi-firm gel. World trade atlas (2002) reported that the New Zealand dairy industry exported 289,000 tonnes of cheese between June 2001 and 2002. Cheese emerged as the second highest exported dairy produce after milk powder for the NZ dairy industry.

Many processed and formulated foods are multi-component systems, containing protein/polysaccharides/fat mixtures. In order to achieve desirable functional properties in such foods, the use of various additives has been widely practised. Of particular interest in this regard, because of their ability to bind water, improve viscosity and gelation, are water-soluble, food-grade polysaccharides. Polysaccharides are already extensively used in a variety of manufactured dairy products as stabilizers and thickening or gelling agents. The current trend towards new dairy products with lower fat and lower total solids content has created a need for the use of polysaccharides.

Extensive research work has been carried out on cheesemaking, especially on understanding the physical chemistry of milk gelation, its processing conditions as well as properties. A number of papers by various authors (Dalgleish, 1979, 1981 and 1983; van Hooydonk, 1984, 1986, 1987 and 1988; Zoon et al., 1988a, b, and c and 1989a and b; Walstra, 1983, 1986, 1990 and 1993) accumulated over the years have established
information on the effects of milk renneting conditions like pH, temperature, ionic strength, calcium concentration, casein concentration and the temperature history of the milk on the final property of the (cheese) product. The availability of this information had no doubt led to further research as well as application in commercial cheesemaking processes. However, there still remains a great deal to be understood in the complex interactions of proteins, fat and minerals during cheesemaking. In addition, the effect of the incorporation of polysaccharides in cheesemaking is practically unknown.

The main aim of this thesis was to study the effect of adding polysaccharides and gelatin on the gelation of skim milk by the addition of rennet, which is an important step in cheesemaking. Hence, an investigation of the effect of kappa (κ-) carrageenan, xanthan gum, guar gum, high-methoxyl (HM) pectin and gelatin, on the properties of rennet-induced skim milk gels will be presented.

1.2 Thesis Outline

This thesis seeks to provide an understanding on the effects of adding biopolymers like κ-carrageenan, xanthan, guar, HM pectin and gelatin on the properties of rennet-induced skim milk gels.

Chapter 2 reviews the literature and summarises the knowledge relevant to rennet-induced milk gels and milk protein/polysaccharides interactions. The scope of the project limits the review primarily to rennet-induced skim milk gels as well as understanding properties of the biopolymers used in this research.

Chapter 3 describes the analytical methods used in this research work. Brief background information on the methods used is included before detailing the experimental conditions.

Chapter 4 discusses the effect of polysaccharide as well as gelatin addition on the rheological properties of rennet-induced skim milk gels using a stress-controlled rheometer.
Chapter 5 reveals the microstructure of renneted skim milk containing polysaccharides and gelatin, and supports the findings through syneresis measurements.

Chapter 6 displays results of one recent analytical technique, Diffusing wave spectroscopy (DWS). The effect of adding polysaccharides and gelatin on the extent of aggregation and gelation time on rennet-induced skim milk was examined.

Rheological properties of renneted skim milk containing polysaccharides and gelatin in a commercial cheesemaking conditions are presented in Chapter 7.

Chapter 8 gives a general discussion highlighting the interactions involving renneted casein micelles and the biopolymers used.

Finally, the thesis closes with the final chapter summarising the major conclusions and recommendations.