Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Multiport Power Electronics Circuitry for Integration of Renewable Energy Sources in Low Power Applications

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Electrical Engineering

at Massey University, Palmerston North

New Zealand

Zubair Rehman

2017
The increasing demand for electricity and the global concern about environment has led energy planners and developers to explore and develop clean energy sources. Under such circumstances, renewable energy sources (RES) have emerged as an alternative source of energy generation. Immense development has been made in renewable energy fields and methods to harvest it. To replace conventional generation system, these renewable energy sources must be sustainable, reliable, stable, and efficient. But these sources have their own distinguished characteristics. Due to sporadic nature of renewable energy sources, the uninterrupted power availability cannot be guaranteed. Handling and integration of such diversified power sources is not a trivial process. It requires high degree of efficiency in power extraction, transformation, and utilization. These objectives can only be achieved with the use of highly efficient, reliable, secure and cost-effective power electronics interface. Power electronics devices have made tremendous developments in the recent past. Numerous single and multi-port converter topologies have been developed for processing and delivering the renewable energy.

Various multiport converter topologies have been presented to integrate RES, however some limitations have been identified in these topologies in terms of efficiency, reliability, component count and size. Therefore, further research is required to develop a multiport interface and to address the highlighted issues.

In this work, a multi-port power electronics circuitry for integration of multiple renewable energy sources is developed. The proposed circuitry assimilates different renewable sources to power up the load with different voltage levels while maintaining high power transfer efficiency and reliability with a simple and reliable control scheme.

This research work presents a new multiport non-isolated DC-DC buck converter. The new topology accommodates two different energy sources at the input to power up a variable load. The power sources can be employed independently and concurrently. The converter also has a bidirectional port which houses a storage device like battery to store the surplus energy under light load conditions and can serve as an input source in case of absence of energy sources.
The new presented circuitry is analytically examined to validate its effectiveness for multiport interface. System parameters are defined and the design of different components used, is presented.

After successful mathematical interpretation, a simulation platform is developed in MATLAB/Simscape to conduct simulations studies to verify analytical results and to carry out stability analysis.

In the final stage, a low power, low voltage prototype model is developed to authenticate the results obtained in simulation studies. The converter is tested under different operating modes and variable source and load conditions.

The simulation and experimental results are compiled in terms of converter’s efficiency, reliability, stability.

The results are presented to prove the presented topology as a highly reliable, stable and efficient multiport interface, with small size and minimum number of components, for integration of renewable energy sources.
Research Outputs

Journal Publications

Journal (In Press)

Conference Publications

Seminars and Presentations

Awards

1. Massey University Doctoral Completion Bursary 2016.

2. Universities New Zealand Claude McCarthy Fellowship 2015.

3. HEC Pakistan MS leading to PhD Scholarship (2012-2017).
Acknowledgements

All the praise and thanks to Almighty Allah for His countless blessings.

I would like to acknowledge the contributions of all the people who have helped and supported me throughout my PhD studies.

I would like to express sincere gratitude to my Supervisors, Associate Professor Ibrahim H. Al-Bahadly and Professor Subhas Chandra Mukhopadhyay for their valuable guidance, help and support in my studies. I sincerely thank my supervisors for their able supervision, optimism inspiration, and confidence to conduct and complete this research work.

I am grateful to Dr. Jesus M. Corres from Public University of Navarra, Pamplona, Spain for his help, guidance, and support in this study. I am also thankful to Mr. Ken Mercer and SEAT administrative staff for their help and support.

Thanks to all my family members for their love and care.

Special thanks to my wife Beenish, daughter Romesa and son Abdul Mohaiman, for their love, patience, care, and support to successfully complete this research work.

I am thankful to Massey University Palmerston North for providing a wonderful research atmosphere, equipment, and resources.

I am also grateful to Higher Education Commission Pakistan (HEC) for providing me the opportunity for higher studies abroad and for providing all the financial support to complete this project.
Table of Contents

Abstract... i
Research Outputs ... iii
Acknowledgements ... vi
List of Figures ... xi
List of Tables ... xv
Abbreviated Terms ... xvi

1 Introduction .. 1
 1.1 Background... 1
 1.2 Electricity Generation .. 1
 1.3 Integration of Multiple Sources .. 3
 1.4 Challenges in integration of Multiple Sources ... 4
 1.5 Power Electronics Interface ... 5
 1.6 DC-DC Converters ... 8
 1.7 Statement of Research Problem ... 8
 1.8 Aims and Objectives ... 9
 1.9 Scope of Work ... 9
 1.10 Research Methodology ... 10
 1.10.1 Mathematical Modelling .. 10
 1.10.2 Simulation Studies ... 10
 1.10.3 Experimental Studies ... 10
 1.11 Research Contribution ... 11
 1.12 Applications ... 11
 1.13 Thesis Organisation .. 12

2 Non-Isolated DC-DC Converter Topologies .. 14
 2.1 Introduction .. 14
 2.2 Single-Port Non-Isolated DC-DC converters .. 14
 2.2.1 DC-DC Boost Converters .. 14
 2.2.2 DC-DC Buck Converters ... 14
 2.2.3 DC-DC Buck-Boost Converters .. 15
 2.2.4 DC-DC Cuk Converter ... 15
2.2.5 DC-DC SEPIC Converter ... 15
2.3 Multi-Port Non-Isolated DC-DC converters ... 16
2.4 Dual Input-Single Output DC-DC Converters (DISO) 17
2.5 Single Input-dual output DC-DC Converters (SIDO) 24
2.6 Multi Input-Multi Output Converters ... 28
 2.6.1 Dual Output Mode .. 29
 2.6.2 Dual Input Mode ... 31
 2.6.3 Single Input Single Output Mode ... 32
2.7 Comparison of Multi Input Non-Isolated DC-DC Converter Topologies .. 34
 2.7.1 Cost of Converter ... 34
 2.7.2 Reliability .. 35
 2.7.3 Flexibility ... 35
 2.7.4 Efficiency .. 36
2.8 Limitations in Multiport Topologies ... 36
2.9 Need of Further Research .. 37
2.10 Conclusion .. 38
3 New Multiport Converter Topology .. 39
 3.1 Architecture of New Topology ... 39
 3.2 Modes of Operation ... 40
 3.2.1 Dual input-Single output mode ... 41
 3.2.2 Dual input-Dual output mode .. 50
 3.2.3 Single input-Dual output mode ... 58
 3.2.4 Single Input-Single output mode .. 58
 3.3 Design of Components .. 60
 3.3.1 Inductor Rating .. 60
 3.3.2 Output Capacitor Rating .. 61
 3.3.3 Diode Rating .. 61
 3.3.4 MOSFET Rating .. 62
 3.4 Conclusion .. 62
4 Control of Novel Multiport Converter Topology 63
 4.1 Introduction .. 63
 4.2 Control Objectives for Multiport Buck Converter 64
 4.3 Dynamic Representation of New Topology 66
7.3.2 Load Regulation ... 125
7.3.3 Cross Regulation ... 126
7.4 Comparison of new topology with the other work 127
 7.4.1 Reliability .. 127
 7.4.2 Number of Components/size .. 127
 7.4.3 Efficiency ... 128
7.5 Conclusion .. 128

8 Conclusions and Future Work .. 130
 8.1 Conclusions ... 130
 8.2 Future Opportunities ... 132
References .. 134
Appendix A: DRC 16 Statement of Contribution 147
Appendix B: Altium Model for Multiport Converter 152
Appendic C: Altium Simulation Results in DIDO mode 154
Appendix D: Computer Program to control the converter 156
List of Figures

Figure 1-1 Share of electricity generation by fuel (2000-2040) [1] 2
Figure 1-2 Share of Renewable Energy Generation by source [1] 2
Figure 1-3 Typical Hybrid Energy System .. 4
Figure 1-4 PE interface for RES (a) AC Generating units (b) DC generating Units 7
Figure 2-1 Conventional single-port Structure .. 16
Figure 2-2 Multiport DC-DC converter structure ... 17
Figure 2-3 Double Input Buck-Buck Boost Converter ... 18
Figure 2-4 Typical current and voltage waveforms of double input converter 19
Figure 2-5 Unidirectional Multi input buck-boost converter 20
Figure 2-6 Bidirectional multi input converter .. 20
Figure 2-7 Dual Input Buck-Buck Converter ... 21
Figure 2-8 Dual input buck boost buck boost converter 22
Figure 2-9 Typical waveforms of dual input buck-buck converter 22
Figure 2-10 Single input-dual output buck converter .. 25
Figure 2-11 Single inductor dual output converter with multi variable control 27
Figure 2-12 Single input-double output unidirectional buck converter 27
Figure 2-13 Single input-double output bidirectional buck converter 27
Figure 2-14 Multi input-Multi output converter topology 28
Fig. 2-15 Three-port Converter .. 29
Figure 2-16 Equivalent circuit of three ports converter in Dual Output mode 30
Figure 2-17 Typical waveforms of three ports converter in Dual Output mode 31
Figure 2-18 Equivalent circuit of three ports converter in Dual Input mode 32
Figure 2-19 Typical waveforms of three ports converter in Dual Input mode 33
Figure 2-20 Three port converter in single input-single output mode 33
Figure 2-21 Three input DC-DC Converter .. 34
Figure 3-1 Dual input-Dual output DC-DC Buck Converter 40
Figure 3-2 Switching Schemes for Dual Input-Single Output mode 43
Figure 3-3 Equivalent Circuits for dual input sub mode 1 (a) Switching State 1 (b)
Spinning State 2 (c) Switching State 3 (d) Switching State 4 46
Figure 3-4 Gate signals and inductor current waveforms for dual input sub mode 147
Figure 5-13 Change in Output Voltages Vo1 and Vo2 ... 90
Figure 5-14 Regulation of Output Voltage Vo1 during mode transition 90
Figure 5-15 Change in Duty Cycles d3 and d5 ... 90
Figure 5-16 Decrease in Inductor Current due to decrease in load 91
Figure 5-17 Regulated output voltage (Vo1) after increase in load current 91
Figure 5-18 Increase in Load current from 0.65 A to 0.8 A 92
Figure 5-19 Output Voltage (Vo2) Regulation after increase in load current 92
Figure 5-20 Output Voltage (Vo1) Regulation after increase in load current 92
Figure 5-21 Increase in Inductor Current due to increase in load current 93
Figure 6-1 Experimental setup for Prototype Converter 95
Figure 6-2 Equivalent Circuits for Dual input-Dual output mode 97
Figure 6-3 Input Duty Cycles d1 and d2 in DIDO mode .. 98
Figure 6-4 Output Duty Cycles d3 and d5 in DIDO mode 98
Figure 6-5 Duty Cycle d1 and Inductor Current IL in DIDO mode 99
Figure 6-6 Regulated Output Voltages in DIDO mode .. 99
Figure 6-7 Equivalent Circuits for Dual input-Single output mode 100
Figure 6-8 Duty Cycles d1 and d2 in DISO mode ... 101
Figure 6-9 Duty Cycle d1 and Inductor Current IL in DISO mode 101
Figure 6-10 Duty Cycles d1 and d5 in DISO mode ... 101
Figure 6-11 Regulated Output Voltage in DISO mode 102
Figure 6-12 Equivalent Circuits for Single input-Dual output mode 102
Figure 6-13 Duty Cycle d1 and Inductor Current IL in SIDO mode 103
Figure 6-14 Duty Cycles d1 and d5 in SIDO mode ... 103
Figure 6-15 Regulated Output Voltages in SIDO mode 104
Figure 6-16 Equivalent Circuits for Single input-Single output mode 104
Figure 6-17 Duty Cycles d4 and d5 in SISO mode ... 105
Figure 6-18 Duty Cycle d4 and Inductor Current IL in SISO mode 105
Figure 6-19 Regulated Output Voltage in SISO mode 106
Figure 7-1 Equivalent circuit of DIDO converter in synchronous mode 111
Figure 7-2 Power loss Pie Chart in DIDO mode under full load 111
Figure 7-3 Efficiency of the converter in different modes of operation 114
Figure 7-4 Power loss Pie Chart in SISO mode ... 114
Figure 7-5 Efficiency of the converter in DIDO mode with different load current 115
Figure 7-6 Comparison of calculated, simulated and measured efficiency.......... 115
Figure 7-7 Simulink model of Multiport Converter for time and frequency domain analysis ... 117
Figure 7-8 Simulink model of Multiport Converter for time and frequency domain analysis (Sub System) .. 118
Figure 7-9 Multiport Converter State Equations Block 119
Figure 7-10 Bode Plot for Single Input-Dual output mode vo1/d5 120
Figure 7-11 Bode Plot for Single Input-Dual output mode vo2/d5 120
Figure 7-12 Bode Plot for Single Input-Dual output mode vo2/d3 121
Figure 7-13 Bode Plot for Single Input-Dual output mode vo1/d3 121
Figure 7-14 Bode Plot for Dual Input-Single output mode vo1/d5 121
Figure 7-15 Bode Plot for Dual Input-Dual output mode vo1/d5 122
Figure 7-16 Bode Plot for Dual Input-Dual output mode vo2/d5 122
Figure 7-17 Bode Plot for Dual Input-Dual output mode vo1/d3 122
Figure 7-18 Bode Plot for Dual input- Dual output mode vo2/d3 123
Figure 7-19 Output voltage Vo1 regulation due to decrease in input voltage..... 124
Figure 7-20 Output voltage Vo1 regulation due to increase in input voltage..... 124
Figure 7-21 Output voltage Vo1 regulation due to decrease in input voltage..... 124
Figure 7-22 Output voltage Vo2 regulation due to decrease in input voltage..... 125
Figure 7-23 Output voltage Vo1 regulation due to decrease in load Current...... 125
Figure 7-24 Output voltage Vo2 regulation due to increase in load current 126
Figure 7-25 Increase in Inductor current due to increase in load current........ 126
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Comparison of MI DC-DC Converter Topologies</td>
<td>36</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Identified Limitations in existing Multiport topologies</td>
<td>37</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Switching Schemes for Dual input -Single output mode</td>
<td>42</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Switching Schemes for Dual Input-Dual output mode</td>
<td>57</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>System Parameters for simulation studies</td>
<td>79</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Duty Cycle and Output Voltage for open loop Converter</td>
<td>80</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Design Parameters for Experimental Setup</td>
<td>96</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>Components Value for Experimental setup</td>
<td>96</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>Measured values for DIDO mode</td>
<td>97</td>
</tr>
<tr>
<td>Table 6-4</td>
<td>Measured values for DISO mode</td>
<td>100</td>
</tr>
<tr>
<td>Table 6-5</td>
<td>Measured values for SIDO mode</td>
<td>103</td>
</tr>
<tr>
<td>Table 6-6</td>
<td>Measured values for SISO mode</td>
<td>105</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Parameters used for efficiency calculation</td>
<td>108</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Power loss in DIDO mode</td>
<td>110</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>Power loss in SIDO mode</td>
<td>112</td>
</tr>
<tr>
<td>Table 7-4</td>
<td>Power loss in DISO mode</td>
<td>112</td>
</tr>
<tr>
<td>Table 7-5</td>
<td>Power loss in SISO mode</td>
<td>113</td>
</tr>
<tr>
<td>Table 7-6</td>
<td>Multiport Converter Parameters block</td>
<td>119</td>
</tr>
<tr>
<td>Table 7-7</td>
<td>Comparison of Converter with other topologies</td>
<td>129</td>
</tr>
<tr>
<td>Table 7-8</td>
<td>Efficiency Comparison</td>
<td>129</td>
</tr>
</tbody>
</table>
Abbreviated Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Engineering and Advanced Technology SEAT</td>
<td>Higher Education Commission HEC</td>
</tr>
<tr>
<td>Giga Watt GW</td>
<td>Annual Energy Outlook AEO</td>
</tr>
<tr>
<td>Hybrid Energy System HES</td>
<td>Renewable Energy System RES</td>
</tr>
<tr>
<td>Photovoltaic PV</td>
<td>Power Electronics PE</td>
</tr>
<tr>
<td>Single input-Single Output SISO</td>
<td>Dual input-Single Output DISO</td>
</tr>
<tr>
<td>Single input-Dual Output SIIDO</td>
<td>Dual input-Dual Output DIDO</td>
</tr>
<tr>
<td>Pulsating Source Cells PSC</td>
<td>Multi-Input Converter MIC</td>
</tr>
<tr>
<td>Three Port Converter TPC</td>
<td>Multiport Converter MPC</td>
</tr>
<tr>
<td>Pulsating Voltage-Source Cell PVSC</td>
<td>Pulsating Current-Source Cell PCSC</td>
</tr>
<tr>
<td>Pulse Width Modulation PWM</td>
<td>Pulse-Skipping Modulation PSM</td>
</tr>
<tr>
<td>Pulse-Frequency Modulation PFM</td>
<td>Single input Multi Output SIMO</td>
</tr>
<tr>
<td>Single Inductor Multi Output SIMO</td>
<td>Continuous Conduction Mode CCM</td>
</tr>
</tbody>
</table>
Multi Input Multi Output MIMO
Multi Input MI
Multi Output MO
Discontinuous Conduction Mode DCM
State Space Averaging SSA
Relative Gain Array RGA