Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EFFECT OF ETHANOL ON CORTISOL METABOLISM IN MAN

A thesis presented in fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

PANDORA CARLYON EVANS

1979
ABSTRACT

Methods were developed for the estimation of human plasma cortisol by radioimmunoassay and urinary 6β-hydroxycortisol (6βOHF) by colorimetry after separation by thin layer chromatography (TLC). In addition profiles of urinary neutral steroids were obtained by gas chromatographic separation of methoxime-trimethylsilyl derivatives from urine extracts on a glass capillary column. This approach was found to be more sensitive and reproducible than profile studies based on TLC separation and colorimetric estimation.

Pilot studies of the plasma cortisol levels of normal subjects showed a consistent rise in cortisol during alcohol loading under the conditions of the observations, but in hospital patients admitted with acute alcohol intoxication, variability in the experimental conditions masked any consistent changes. Large variations in method reproducibility as well as subject differences affected results from the measurement of 6βOHF and chloroform extractable 17-hydroxycorticosteroids in one normal and four alcoholic subjects, rendering apparent initial differences insignificant. The results suggest, but do not demonstrate, that alcohol ingestion may divert normal cortisol metabolism into a pathway leading to the production of 6βOHF.

Urinary steroid profiles obtained from two normal subjects, one normal subject under conditions of alcohol load and one alcoholic subject suggest that any effects of alcohol on cortisol metabolism are subtle and would require study of a large number of cases to define them.

This work has served to delineate the faults and potential of various approaches to the study of cortisol metabolism and the possible effects of alcohol thereon. It would seem that their application in carefully designed and well controlled experiments to a larger number of subjects is necessary to obtain the information desired.
ACKNOWLEDGEMENTS

The co-operation of Dr Louis Bieder and the staff of the Detoxification Unit at Palmerston North Hospital in providing urine samples from intoxicated patients is gratefully acknowledged. My thanks is also due to Professor R. D. Batt and the members of the Alcohol Research Group at Massey University, in particular Mr K. G. Couchman for assistance with gas chromatography and mass spectrometry and my supervisor Dr R. M. Greenway for his advice and encouragement throughout this work. I am most grateful to Mrs M. R. Singleton for typing this manuscript.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>Abbreviation</th>
<th>Trivial name</th>
<th>Systematic name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.C.T.H.</td>
<td>adrenocorticotropic hormone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTZ</td>
<td>Blue Tetrazolium (chloride)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBE</td>
<td>cholesterol n-butyl ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSIM</td>
<td>trimethylsilyl imidazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLC</td>
<td>gas liquid chromatography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>paper chromatography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kg</td>
<td>Kieselghur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si gel</td>
<td>silica gel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-KS</td>
<td>steroid with keto group at 17-carbon position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-OHCS</td>
<td>steroid with hydroxyl group at 17-carbon position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$Cl$_2$, DCM</td>
<td>dichloromethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-19</td>
<td>steroid with no side chain at carbon 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-21</td>
<td>steroid with 2 carbon side chain at carbon 17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEROIDS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Trivial name</th>
<th>Systematic name</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>androsterone</td>
<td>5α-androstan-3α-ol-17-one</td>
</tr>
<tr>
<td>Et</td>
<td>etiocholanolone</td>
<td>5β-androstan-3α-ol-17-one</td>
</tr>
<tr>
<td>11-HAn</td>
<td>11-hydroxyandrosterone</td>
<td>5α-androstan-3α,11β-diol-17-one</td>
</tr>
<tr>
<td>11-HEt</td>
<td>11-hydroxyetiocholanolone</td>
<td>5β-androstan-3α,11β-diol-17-one</td>
</tr>
<tr>
<td>11-KAn</td>
<td>11-ketoandrosterone</td>
<td>5α-androstan-3α-ol-11,17-dione</td>
</tr>
<tr>
<td>11-KEt</td>
<td>11-ketoetiocholanolone</td>
<td>5β-androstan-3α-ol-11,17-dione</td>
</tr>
<tr>
<td>DHEA</td>
<td>dehydroepiandrosterone</td>
<td>5-androsten-3αol-17-one</td>
</tr>
<tr>
<td>Pd</td>
<td>pregnanediol</td>
<td>5β-pregnan-3α,20α-diol</td>
</tr>
<tr>
<td>Pt</td>
<td>pregnanetriol</td>
<td>5β-pregnan-3α,17α,20α-triol</td>
</tr>
<tr>
<td>Atr</td>
<td>androstenetriol</td>
<td>5-androsten-3β,16α,17β-triol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Compound Name</td>
<td>Structure Formula</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>E</td>
<td>cortisone</td>
<td>4-pregnen-17α,21-diol-3,11,20-trione</td>
</tr>
<tr>
<td>F</td>
<td>cortisol</td>
<td>4-pregnen-11β,17α,21-triol-3,20-dione</td>
</tr>
<tr>
<td>THE</td>
<td>tetrahydrocortisone</td>
<td>5β-pregnan-3α,17α,21-triol-11,20-dione</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrocortisol</td>
<td>5β-pregnan-3α,11β,17α,21-tetrol-20-one</td>
</tr>
<tr>
<td>a-THF</td>
<td>allo-tetrahydrocortisol</td>
<td>5α-pregnan-3α,11β,17α,21-tetrol-20-one</td>
</tr>
<tr>
<td>αCo</td>
<td>acortolone</td>
<td>5β-pregnan-3α,17α,20α,21-tetrol-11-one</td>
</tr>
<tr>
<td>βCo</td>
<td>βcortolone</td>
<td>5β-pregnan-3α,17α,20β,21-tetrol-11-one</td>
</tr>
<tr>
<td>αCor</td>
<td>acortol</td>
<td>5β-pregnan-3α,11β,17α,20α,21-pentol</td>
</tr>
<tr>
<td>βCor</td>
<td>βcortol</td>
<td>5β-pregnan-3α,11β,17α,20β,21-pentol</td>
</tr>
<tr>
<td>6βOHNE</td>
<td>6βhydroxycortisone</td>
<td>5-pregnen-6β,17α,21-triol-3,11,20-trione</td>
</tr>
<tr>
<td>6βOHP</td>
<td>6βhydroxycortisol</td>
<td>5-pregnen-6β,11β,17α,21-tetrol-3,20-dione</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Abstract ii
Acknowledgements iii
Abbreviations iv

CHAPTER 1
GENERAL INTRODUCTION

The Effects of Alcohol on Human Endocrine Function 1
Assessment of the Literature 1
Hypothalamic-Pituitary-Gonadal Function 2
Secretion of Catecholamines 2
Hypothalamic-Pituitary-Adrenocortical Axis 2
A Review of the Literature on the Effects of Alcohol on Cortisol Release and Metabolism 3
The Aim of this Project 5

CHAPTER 2
THE EFFECTS OF ETHANOL ON PLASMA CORTISOL IN THE HUMAN
INTRODUCTION 6

MATERIALS AND METHODS 7

MATERIALS
METHODS 8
A Radioimmunoassay for Human Plasma Cortisol 8
The standard curve 8
Plasma samples 8
The radioimmunoassay 9
Background and total counts 9
Correction for free labelled cortisol 10
Correction for non-specific binding by plasma 10
Correction for procedural losses 10
Calculation of cortisol concentration in plasma 10
Antiserum dilution and incubation time 11
Extraction of standards 11
(a) Effect of dichloromethane residues 11
(b) Effect of extraction of plasma 12
(c) Effect of plasma proteins on assay 12
Validation of Radioimmunoassay for Plasma Cortisol 13
Binding of plasma with no added antibody 13
Coefficients of variation 15
(a) Intra-assay variation 15
(b) Inter-assay variation 15
Recovery of unlabelled steroid from plasma 16
Sensitivity 17
Specificity of anticortisol-3-BSA serum 17
EXPERIMENTAL SUBJECTS

Normals
Alcoholics

RESULTS AND DISCUSSION

Normal Subjects
Alcoholic Subjects
Conclusion

CHAPTER 3
EFFECT OF ETHANOL ON URINARY STEROID METABOLITE PROFILES

INTRODUCTION
Disturbance of Steroid Metabolic Pathways by Alcohol
Separation Techniques in Steroid Analysis

MATERIALS AND METHODS

MATERIALS
METHODS
Collection of Urine Samples
Standard Hydrolytic Procedure
Solvent Extraction
Thin Layer Chromatography
Partition Systems
Adsorption Systems
Detection of Steroids on TLC Plates
Detection of the -4ene-3-one Group
Spray Reagents
Extraction of Thin Layer Material
Scintillation Counting
Quantitative Estimation of Steroids

RESULTS AND DISCUSSION

Experiment "A"
Conclusions
Experiment "B"
Conclusions
CHAPTER 4
APPLICATION OF CAPILLARY COLUMN GAS LIQUID CHROMATOGRAPHY TO URINARY STEROID PROFILING

INTRODUCTION
A Review of Recent Advances in Capillary Column Gas Chromatography of Steroids 40
Preparation of Samples for GLC 42
(a) Hydrolysis 42
(b) Extraction and purification 43
(c) Derivative formation 43
Identification and Estimation of Steroids by GLC 45

MATERIALS AND METHODS
MATERIALS 47
METHODS
Gas Chromatography 47
(a) Gas chromatography 47
(b) Inlet splitter 48
(c) Detector 48
(d) Gas flows and regulation 49
(e) Integrator 49
(f) Recorder 49
(g) Operating conditions 49
Steroid Standards 50
Derivatisation of pure steroids 50
Retention times 50
Separation of pure steroid mixtures 50
Reproducibility 52
Standard Curves and Quantitation 55
Human Urinary Steroid Profiles 55
Urine Collection 55
Hydrolysis 56
Extraction 56
Derivatisation 57

RESULTS AND DISCUSSION
URINARY STEROID PROFILES 58
Normal Female 58
Normal Male 58
Alcohol Loading Experiment 58
Alcoholic Female 64
Conclusion 67
CHAPTER 5
6BETA-HYDROXYCORTISOL EXCRETION
DURING ALCOHOL LOADING

INTRODUCTION
Microsomal Oxidation of Alcohol, Drugs and Steroids 68
Alcohol Metabolism 68
Drug and Steroid Metabolism 69
Cortisol Metabolism: The Role of 6β-Hydroxycortisol 69
6β-Hydroxycortisol as an Indicator of Hepatic Microsomal Oxidizing Capacity 73
The Aim of this Study 73

MATERIALS AND METHODS

MATERIALS

METHODS
Collection of Samples 76
Determination of 17-Hydroxycorticosteroids 76
Method I (hydrolytic method) 76
The Porter-Silber Reaction 77
Method II (column method) 78
Comparison of hydrolytic and column methods 79
Extraction and Purification of 6β-Hydroxycortisol from Urine
Extraction 81
Purification 81
Conjugated 6β-Hydroxycortisol 83
Method I 83
Method II 84
Specific Activities 84

RESULTS AND DISCUSSION
Normal Level of 6β-Hydroxycortisol 86
Alcoholic Subjects
Subject (1) 86
Subject (2) 89
Further subjects 89
Conclusions 90

CHAPTER 6
CONCLUSION

BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2i</td>
<td>Comparison of Serial Dilutions of Plasma under Different Analytical Conditions</td>
<td>14</td>
</tr>
<tr>
<td>2ii</td>
<td>Coefficients of Intra-assay Variation</td>
<td>15</td>
</tr>
<tr>
<td>2iii</td>
<td>Between Assay Variation: Comparison of Points on Standard Curves over Four Assays</td>
<td>16</td>
</tr>
<tr>
<td>2iv</td>
<td>Comparison of Experimental Conditions for Estimating Recovery of Unlabelled Cortisol from Plasma</td>
<td>17</td>
</tr>
<tr>
<td>2v</td>
<td>Specificity of Antiserum: Cross Reaction with Other Steroids</td>
<td>18</td>
</tr>
<tr>
<td>2vi</td>
<td>Effect of Acute Doses of Alcohol on the Cortisol Levels of Normal Subjects</td>
<td>20</td>
</tr>
<tr>
<td>2vii</td>
<td>Cortisol and Blood Alcohol Levels in Alcoholic Subjects</td>
<td>21-22</td>
</tr>
<tr>
<td>2viii</td>
<td>Correlation of Time of Day Variance with Plasma Cortisol and Blood Alcohol</td>
<td>23</td>
</tr>
<tr>
<td>2ix</td>
<td>Correlation of Time of Day with Blood Alcohol Level</td>
<td>24</td>
</tr>
<tr>
<td>3i</td>
<td>Rf Values for Standard Steroids in Three TLC Systems</td>
<td>31</td>
</tr>
<tr>
<td>4i</td>
<td>Retention Times of Steroid Standards</td>
<td>51</td>
</tr>
<tr>
<td>4ii</td>
<td>Reproducibility of Steroid Peak Areas over Three Days</td>
<td>53</td>
</tr>
<tr>
<td>4iii</td>
<td>Linear Dilution of Standard Steroid Derivatives</td>
<td>54</td>
</tr>
<tr>
<td>4iv</td>
<td>Protocol for Alcohol Loading Experiment</td>
<td>59</td>
</tr>
<tr>
<td>4v</td>
<td>Alcohol Loading Experiment: Protocol and Fluid Balance for Day II, Alcohol Load</td>
<td>60</td>
</tr>
<tr>
<td>4vi</td>
<td>Alcohol Loading Experiment: Ratios of Steroid Peak Heights/CBE</td>
<td>61</td>
</tr>
<tr>
<td>4vii</td>
<td>Alcohol Loading Experiment: Ratios of Steroid Peak Areas/CBE</td>
<td>61</td>
</tr>
<tr>
<td>4viii</td>
<td>Alcohol Loading Experiment: Ratios of Steroid Pairs, Based on Peak Height/CBE Ratios</td>
<td>62</td>
</tr>
<tr>
<td>4ix</td>
<td>Alcohol Loading Experiment: Ratios of Steroid Pairs, Based on Peak Area/CBE Ratios</td>
<td>62</td>
</tr>
<tr>
<td>4x</td>
<td>Summary of Alcohol Loading Experiment</td>
<td>64</td>
</tr>
<tr>
<td>4xi</td>
<td>Alcoholic Female Experiment: Ratios of Steroid Peak Areas/CBE</td>
<td>65</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>66</td>
<td>Alcoholic Female Experiment: Ratios of Steroid to Internal Standard</td>
<td>For Selected Steroid Pairs</td>
</tr>
<tr>
<td>66</td>
<td>Alcoholic Female Experiment: Steroid Excretion</td>
<td></td>
</tr>
<tr>
<td>71-72</td>
<td>Factors Reported as Being Associated with Increases, or Relative</td>
<td>Increases in Excretion of 6β-Hydroxycortisol</td>
</tr>
<tr>
<td>78</td>
<td>Reproducibility of Standard Curve for Porter-Silber Reaction</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Comparison of Two Methods for Determining Urinary 17-Hydroxycorticosteroids</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Recovery of Unlabelled 6β-Hydroxycortisol</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Intra-assay Difference in 6β-Hydroxycortisol, Assay of Seven Urine</td>
<td>Samples</td>
</tr>
<tr>
<td>85</td>
<td>Specific Activities of 3H-6β-Hydroxycortisol following Thin Layer</td>
<td>and Paper Chromatographic Separations</td>
</tr>
<tr>
<td>86</td>
<td>Excretion Levels of 6β-Hydroxycortisol and 17-Hydroxycorticosteroids</td>
<td>by a Normal Subject</td>
</tr>
<tr>
<td>87</td>
<td>Levels of Urinary 6β-Hydroxycortisol Obtained from Alcoholic Subject</td>
<td>(1)</td>
</tr>
<tr>
<td>89</td>
<td>6β-Hydroxycortisol Levels in Alcoholic Subjects</td>
<td></td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Between Pages</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and 3</td>
<td>Regulation of the Hypothalamic-Pituitary-Adrenal Cortex System</td>
<td></td>
</tr>
<tr>
<td>9 and 10</td>
<td>Antiserum Binding Curves</td>
<td></td>
</tr>
<tr>
<td>10 and 11</td>
<td>Typical Standard Curve for Cortisol Radioimmunoassay</td>
<td></td>
</tr>
<tr>
<td>11 and 12</td>
<td>Effect of Solvent on Standard Curve</td>
<td></td>
</tr>
<tr>
<td>12 and 13</td>
<td>Extracted and Non-Extracted Standard Curves</td>
<td></td>
</tr>
<tr>
<td>12 and 13</td>
<td>Comparison of Standard Curves</td>
<td></td>
</tr>
<tr>
<td>14 and 15</td>
<td>Parallelism of Standard Curve and Plasma Dilution Curve</td>
<td></td>
</tr>
</tbody>
</table>
The Effect of an Acute Dose of Ethanol on the Cortisol Levels of Normal Subjects

Ethanol and Steroid Metabolism Related via NAD+/NADH

Treatment of Urine Sample Prior to Fractionation of Steroids by TLC

Schematic Representation of Experiment "A", Fractionation of Steroids by TLC

TLC Experiment "A": Initial Separation of Extracts in TLC System "W"

TLC Experiment "A": Separation of Eluate I(a) [Cortisone and C-19, 17 ketosteroids] in TLC System "X"

TLC Experiment "A": Separation of Eluates Iae, Iba, Ibb and Ibc in TLC System "Y" (1.5 hr)

TLC Experiment "A": Separation of Eluate I(b) in TLC System "W" (1.25 hr)

Schematic Representation of Experiment "B" Fractionation of Steroids by TLC

TLC Experiment "B": Initial Separation of CH$_2$Cl$_2$ Extracts in TLC System "W"

TLC Experiment "B": Separation of Eluates Uic, UId, Sic and Sid in TLC System "Y"

TLC Experiment "B": Separation of EtOAc Extracts in TLC System "W" (3 hr)

Connection of S.C.O.T. Column to Gas Chromatograph

Connection of Glass-lined Stainless Steel Tubing to S.C.O.T. Column, using S.G.E. "Zero Dead Volume" Unions

S.G.E. Inlet Splitter System: GISS-4A

Apparatus for Drying Down Steroid Derivatives

GLC Profile of Synthetic Steroid Derivative Mixture

GLC Steroid Profile from Normal Female
4vii (a) GLC Steroid Profile from 24 hr Urine of Normal Male
(b) Standard Steroid Mixture
(c) Derivatised Urinary Extract from Normal Male, Supplemented with Standard Steroids

4viii Alcohol Load Experiment: Urinary Steroid Profiles
(a) Day I, sample (a) 61 and 62
(b) Day I, sample (b) 61 and 62
(c) Day I, sample (c) 61 and 62

4ix Alcohol Load Experiment: Urinary Steroid Profiles
(a) Day II, sample (a) 61 and 62
(b) Day II, sample (b) 61 and 62
(c) Day II, sample (c) 61 and 62

4x Alcohol Load Experiment: Urinary Steroid Profiles
(a) Day III, sample (a) 61 and 62
(b) Day III, sample (b) 61 and 62
(c) Day III, sample (c) 61 and 62

4xi Alcoholic Female Experiment: Urinary Steroid Profile
Day I (high blood alcohol) 64 and 65

4xii Alcoholic Female Experiment: Urinary Steroid Profile
Day II (control) 64 and 65

4xiii Alcoholic Female Experiment: Urinary Steroid Profile
Day III (control) 64 and 65

5i Porter-Silber Reaction for 17-Hydroxycorticosteroids: Typical Standard Curve 77 and 78

5ii Recovery of 3H-68-Hydroxycortisol after TLC and Paper Chromatography 81 and 82
CHAPTER I

GENERAL INTRODUCTION

The Effects of Alcohol on Human Endocrine Function

From reviews of this topic, such as that of Wright (1978), it may be concluded that the effects of ethyl alcohol on hormone secretion and metabolism are not large and dramatic, with the exception of its direct inhibition of the neurosecretion of the neurohypophyseal hormones vasopressin and oxytocin. However, as shown from alcohol consumption figures, the average adult in any western society has ethanol present in his bloodstream for several hours per day throughout life, and the tissues of many are never ethanol-free. Under these conditions, even minor disturbances of endocrine balance may become clinically significant and worthy of investigation.

The concentration of hormone to which a receptor tissue responds may be influenced by ethanol if this either (a) affects the rate of secretion of the hormone from the source tissue, or (b) modulates its rate of catabolism or metabolic activation, particularly if this occurs in the liver where ethanol is actively oxidized to acetaldehyde and acetate. Examples of both types of interaction have been reported.

Assessment of the Literature

In spite of the considerable volume of literature on the endocrine consequences of alcohol ingestion, its interpretation is complicated by a number of problems. Comparison of the changes involving acute administration of alcohol with those due to prolonged intake, such as occur in chronic alcoholism, and comparison of the response of habitual drinkers with the response of alcohol-naive subjects, has led to confusion and apparently conflicting results. In addition there has frequently been a failure to distinguish the endocrinological and metabolic effects of alcohol per se from those secondary to tissue (particularly liver) damage and a tendency to regard chronic alcoholics as a homogeneous group regardless of differences in drinking patterns, the type and quantity of liquor consumed, the history, nutritional status and the time interval between drinking and endocrine or
metabolic studies, all of which may profoundly affect the results obtained. Finally there is some difficulty in assessing data obtained before the introduction of modern hormone assays such as specific radioimmunoassays and of correlating results obtained from animal and human studies.

Hypothalamic-Pituitary-Gonadal Function

Hepatic cirrhosis in men is commonly associated with both hypogonadism and feminization. The similarities between the endocrine features of alcoholic and non-alcoholic cirrhosis initially suggested that it was the liver disease itself which was responsible for these changes. Recent evidence, however, suggests a possible direct effect of alcohol on testicular function. The changes described so far indicate that gonadal dysfunction may occur in the absence of overt liver disease but that in alcoholic cirrhosis, the cumulative effects of alcohol and hepatic dysfunction may produce more marked endocrine features. The subject is covered in some detail in the reviews by Adlercreutz (1974), van Thiel and Lester (1976) and Green (1977).

Secretion of Catecholamines

There is evidence from both human and animal studies that alcohol stimulates adrenal medullary secretion. Moderate doses of alcohol have been shown to produce a rise in both the plasma and urine catecholamines of normal human subjects (Perman, 1958; Anton, 1965), while similar effects have been observed in subjects with prolonged histories of drinking (Ogata et al, 1971).

Hypothalamic-Pituitary-Adrenocortical Axis

The effects of alcohol on endocrine function have been studied most extensively in relation to the hypothalamic-pituitary-adrenal (H.P.A.) axis and work in this field has been reviewed by Schenker (1970), Marks and Chakraborty (1973) and Wright (1978). The system and its regulation is shown schematically in Fig. 11.
Figure 1i

Regulation of the Hypothalamic-Pituitary-Adrenal Cortex System

Hypothalamus Neurosecretory Cells \(\xrightarrow{CRH}\) Adenohypophysis \(\xrightarrow{ACTH}\) Adrenal Cortex \(\xrightarrow{CORTISOL}\)

Central Nervous System

Short loops may exist between hypothalamus-pituitary and pituitary-adrenal, imposing further regulation.
Reproduced from Marks and Chakraborty (1973).
Cortisol is the major adrenocortical steroid hormone found in human blood. The circulating levels of cortisol have been shown to rise rapidly in response to trauma e.g. injury, surgery, burns etc. (as reviewed by Alberti and Johnston, 1977). Cortisol is the major anti-anabolic hormone: its ability to inhibit protein synthesis is thought to be responsible for its unique anti-allergic and anti-inflammatory effects. The secretion of cortisol is under the direct control of adrenocorticotropic hormone (A.C.T.H.) produced by the adrenohypophysis (anterior pituitary) in response to the neuroendocrine releasing factor C.R.H. (corticotrophin releasing hormone). The release of C.R.H. is, in turn, determined by the action of external stimuli on the central nervous system as well as a circadian "clock".

A Review of the Literature on the Effects of Alcohol on Cortisol Release and Metabolism

Although H.P.A. function appears to be definitely disturbed in chronic alcoholics (Stokes, 1971) the literature reports are often contradictory. This appears to be due, in part, to the absence of suitable techniques for measuring the hormones involved, as well as the multiplicity of possible physiological, psychological and sociological contributions.

In man the effects appear to be dose related: while moderate to large doses may activate adrenocortical activity through higher regulatory centres (rather than by direct action on the adrenal or pituitary), lower doses are less predictable and it has been postulated that they may even decrease the activity of a previously aroused H.P.A. system via a sedative effect on the central nervous system.

Kissin et al. (1959) suggested that some of the observed abnormalities in the adrenocortical function of alcoholic subjects may be related to impaired liver function. A further investigation (Kissin et al., 1960) demonstrated increased urinary 17-OHCS and decreased plasma levels, accompanied by a marked diuresis, within two hours of a single dose of ethanol (1 g/Kg body weight) to alcoholic subjects. The similar effects of a water load seemed to indicate that the adrenocortical depletion may have been due to increased renal clearance, but a simultaneous water and
ethanol load produced a rise in plasma 17-OHCS with no appreciable change in urinary levels, suggesting an active stimulatory effect of ethanol on the adrenal cortex.

Perman (1961) however, failed to show a significant change in urinary 17-OHCS two to three hours after a 1 g/Kg dose of ethanol to non-alcoholic subjects; there were no corresponding plasma steroid measurements.

Margraf et al. (1967) found no significant difference in cortisol secretion rate or total excretion of 17-OHCS in alcoholic subjects as compared with non-alcoholic controls, although the distribution of the individual component steroids appeared to differ significantly from normal. In addition, 24 hour 17-ketosteroid excretion, response to A.C.T.H. and rate of metabolism of exogenous cortisol appeared to be lowered in alcoholics, while plasma corticosterone and its urinary metabolites were increased above normal levels, suggesting that alcohol affected steroid metabolism rather than adrenocortical function.

In reviewing the literature Schenker (1970) suggests that chronic alcoholics show a plasma 17-OHCS level significantly higher than that of partially rehabilitated alcoholics, which in turn, is higher than that of non-alcoholics. A marked rise in an alcoholic's plasma 17-OHCS is often associated with gastro-intestinal disturbance or withdrawal. After 12 hours without alcohol acutely withdrawn, chronic alcoholics showed a 9 am plasma cortisol significantly higher than normal, which fell following the ingestion of small amounts of alcohol (Merry and Marks, 1972). This compares with a distinct rise in plasma cortisol following infusion (Jenkins and Connolly, 1968) or ingestion (Merry and Marks, 1969; Bellet et al., 1970) of ethanol to/by normal subjects. These findings suggest that withdrawal represents a state of considerable stress to the alcoholic the symptoms of which may be relieved by alcohol. Alcohol ingestion by non-alcoholics, however, raises plasma cortisol levels probably by increasing pituitary-adrenocortical activity, since no such effects were noted in non-alcoholic patients with clinical adrenal insufficiency (Bellet et al, 1970).
The Aim of this Project

The goal of the present research was to elucidate some of the effects of ethanol consumption on adrenal corticosteroid release and metabolism in an endeavour to clear up some of the apparent inconsistencies in the literature. Initially, attempts were made to cover effects on both the plasma level of cortisol and its conversion to metabolites and to study both normal and alcoholic subjects. Both approaches required establishment of modern methods of analysis, which occupied most of the time available for this project.